Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский технологический университет «МИСИС»

УТВЕРЖДАЮ

Проректор по образованию

А.И. Воронин

14 » Апруа 2025 г.

ДОПОЛНИТЕЛЬНАЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ОБЩЕРАЗВИВАЮЩАЯ ПРОГРАММА

Инжиниринг и материаловедение

НАПРАВЛЕННОСТЬ: ЕСТЕСТВЕННОНАУЧНАЯ

Уровень: ознакомительный Возраст обучающихся 12 - 18 лет Срок реализации: 36 академических часов

Составитель (разработчик):
 Рязанцева М.А.
 сотрудник НИТУ МИСИС,
ассистент, специалист по методической работе 1 кат кафедры МЦМ

г. Москва 2025 год

1. Пояснительная записка

1.1. Характеристика образовательной программы

Дополнительная общеобразовательная (общеразвивающая) программа дополнительного образования детей и взрослых, реализуемая Федеральным государственным автономным образовательным учреждением высшего образования «Национальный исследовательский технологический университет «МИСИС» (далее — НИТУ МИСИС, Университет МИСИС, Университет) «Инжиниринг и материаловедение» разработана на основе и в соответствии с нормативно-правовыми документами:

- Федеральный закон Российской Федерации от 29 декабря 2012 г. № 273-ФЗ «Об образовании в Российской Федерации» (с изм. на 17.02.2023 г.). (далее 273-ФЗ);
- Концепция развития дополнительного образования детей до 2030 года (с изм. на 15.05.2023 г.) (утверждена распоряжением Правительства Российской Федерации от 31 марта 2022 г. № 678-p).
- Порядок организации и осуществления образовательной деятельности по дополнительным общеобразовательным программам (утвержден приказом Министерства просвещения Российской Федерации от 27 июля 2022 г. № 629) (далее Приказ № 629).
- Целевая модель развития региональных систем дополнительного образования детей (утверждена приказом Министерства просвещения Российской Федерации от 3 сентября 2019 г. № 467) (с изм. на 21.04.2023).
- Приказ Министерства Просвещения Российской Федерации от 30.09.2020 г. № 533 «О внесении изменений в порядок организации и осуществления образовательной деятельности по дополнительным общеобразовательным программам, утверждённый приказом Министерства Просвещения Российской Федерации от 9 ноября 2018 г. № 196»;
- Приказ Министерства Просвещения Российской Федерации от 09.11.2018 г. № 196 «Об утверждении порядка организации и осуществления образовательной деятельности по дополнительным общеобразовательным программам»;
- Постановление Главного государственного санитарного врача Российской Федерации от 28 сентября 2020 г. № 28 «Об утверждении санитарных правил СП 2.4.3648-20 «Санитарно-эпидемиологические требования к организациям воспитания и обучения, отдыха и оздоровления детей и молодёжи»;
- Постановление Главного государственного санитарного врача Российской Федерации от 28 января 2021 г. № 2СанПиН 1.2.3685-21 «Санитарные нормативы и требования к обеспечению безопасности и (или) безвредности для человека факторов среды обитания» (раздел VI «Гигиенические нормативы по устройству, содержанию и режиму работы организаций воспитания и обучения отдыха и оздоровления детей и молодежи»);
- Письмо Министерства образования и науки РФ от 18.11.2015 г. № 09-3242 «О направлении информации» (вместе с «Методическими рекомендациями по проектированию дополнительных общеразвивающих программ (включая разноуровневые программы)»;
- Приказ Департамента образования города Москвы от 17.12.2014 г. № 922 «О мерах по развитию дополнительного образования детей» (с изм. на 24.10.2022);
- Приказ Департамента образования и науки города Москвы от 3.04.2023 г. № 271 «О внесении изменений в приказ Департамента образования и науки города Москвы от 17 декабря 2014 года № 922».;
- Методические рекомендации по реализации дополнительных общеобразовательных программ с применением электронного обучения и дистанционных образовательных технологий: приложение к письму Министерства просвещения Российской Федерации от 31 января 2022 г. № ДГ-245/06;
 - Локальные нормативные акты по образовательной деятельности Университета.

Направленность программы – естественнонаучная.

Уровень освоения – ознакомительный.

Цель программы — профориентация обучающихся и развитие мотивации к техническому творчеству, развитие познавательной активности детей через обучение основам материаловедения, а также содействие наблюдательности в познании мира как важного качества современного ученого и инженера.

Актуальность программы

В настоящее время появляется огромное количество новых материалов во всех областях жизнедеятельности человека. Выбор оптимального материала для успешной реализации любого жизненного проекта сводится к сравнительному анализу огромного количества вариантов существующих решений. Знание классификаций материалов значительно сокращают количество вариантов. Дальнейший выбор легко сделать и обосновать, основываясь на знаниях о свойствах материалов и влиянии на них внешних факторов. в случае выполнения ответственных работ или применении материалов не по их прямому назначению, возникает необходимость в измерении дополнительных характеристик материалов, что, при наличии знаний о существующих методиках организации и проведении эксперимента становится вполне выполнимой задачей. Таким образом, настоящая программа необходима обучающимся для осознанного и обоснованного самостоятельного выбора различных материалов для любых жизненных проектов

Педагогическая целесообразность

Концептуальная идея предлагаемого курса состоит в формировании у обучающихся навыков инженерно-технического творчества и исследовательских навыков. Обучающиеся в процессе наблюдения, исследования, экспериментирования, приобретут новые знания и навыки, которые помогут сформировать свой собственный вектор в выборе своей будущей профессии.

1.2. Цель и задачи

Цель - сформировать мотивированное стремление обучающегося к познанию новых современных инновационных направлений в области технологий цифрового производства и материаловедения

Задачи:

Обучающая:

- научить классифицировать разные виды материалов;
- научить методам определения механических свойств материалов
- научить описывать материалы с точки зрения их физических и механических свойств
 - научить выбирать материал исходя из совокупности свойств
- научить определять факторы среды и условия работы элементов конструкции для обоснования выбора материала

Развивающие:

- развить логическое мышление, пространственное воображение, творческие способности;
- развивать образное, техническое мышление и умение выразить свой замысел в проекте;

- развить познавательные, интеллектуальные и творческие способности обучающихся, в процессе создания моделей и проектов, умение работать в небольших группах, этику общения;
 - развить умение довести решение задачи до работающей модели;
- развить смекалку, находчивость, изобретательность и устойчивый интерес к поисковой творческой деятельности;
- развить умение излагать мысли в четкой логической последовательности, отстаивать свою точку зрения, анализировать ситуацию и самостоятельно находить ответы на вопросы путем логических рассуждений;
- развить умение работать над проектом в команде, эффективно распределять обязанности.

Воспитательные:

- воспитать чувство товарищества, чувство личной ответственности;
- воспитать нравственные качества по отношению к окружающим (доброжелательность, чувство товарищества и т.д.).
- воспитать уважение к интеллектуальной собственности, культуру правомочных заимствований и неприятие плагиата.

Отличительной особенностью программы является то, что она реализуется в короткие сроки за счет сокращения теоретического материала, нестандартных методов изучения материала, простого объяснения сложных явлений и междисциплинарных связях. Это поддерживает высокую мотивацию обучающихся и результативность занятий.

Возраст: 12 - 18 лет

Сроки реализации: 1-3 занятия в неделю по 1-4 академических часа. Общее количество учебных часов, запланированных на весь период обучения, -36.

Формы и режим занятий

Формы проведения занятий: лекции, практические занятия.

Формы организации деятельности: групповые и индивидуально-групповые.

Наполняемость группы: 15-30 человек.

Ожидаемые результаты

В результате освоения программы обучающиеся будут знать:

- основные виды природных материалов;
- области применения различных материалов;
- основные механические свойства материалов;
- основные физические свойства материалов;
- основные эксплуатационные свойства материалов;
- технологию создания композиционных материалов;
- различные классы полимеров.

будут уметь:

- определять вид материала;
- определять прочностные свойства изделий;
- определять эксплуатационные свойства изделий;

- выбирать материал для изделий, исходя из условий эксплуатации;
- планировать и распределять работу над общим проектом между членами команды;
- подбирать производственный метод под материал с нужными свойствами;
- справляться с индивидуальными заданиями, составляющими часть общей задачи.

2. Содержание программы

2.1. Учебно-тематический план

	Раздел / Тема	Аудиторные учебные занятия			Формы
№ п/п		Всего ауд. часов	Лекции	Практические занятия	аттестации (контроля)
1	Тема 1. Понятие	6	4	2	Опрос
	инжиниринга материалов	0			
2	Тема 2. Основы				Опрос
	материаловедения и	8	4	4	-
	свойства материалов				
3	Тема 3. Взаимосвязь между структурой и свойствами	8	4	4	Опрос
4	Тема 4 Основы создания композиционных материалов	6	2	4	Опрос
5	Тема 5. Проектная работа	4	4	4	Защита проекта
	Итого	36	18	18	•

2.2. Рабочая программа

Тема 1. Понятие инжиниринга материалов

Лекция: Знакомство с программой. Правила безопасной работы. Инжиниринг технологий. Инжиниринг материалов. Разборы реальных технологических кейсов

Практическое занятие: Лабораторная работа «Технология переработки термопластов. Поиск новых областей применения изделий из переработанного пластика».

Тема 2. Основы материаловедения и свойства материалов

Лекция: Классификация материалов. Виды классификаций. Механические, физические и эксплуатационные свойства материалов. Методы определения свойств.

Практическое занятие: Лабораторная работа «Определение прочностных характеристик материала при испытании на изгиб металлического образца».

Тема 3. Взаимосвязь между структурой и свойствами

Лекция: Примеры влияния микро и макроструктуры материала на его механические или физические свойства на примере металлических материалов.

Практическое занятие: Лабораторная работа «Исследование микроструктуры металлических образцов разных составов».

Тема 4. Основы создания композиционных материалов

Лекция: Принципы разработки композиционных материалов, примеры существующих КМ, описание их свойств.

Практическое занятие: Разработка идеи проекта создания нового композиционного материала с обоснованием выбора материалов основы и наполнителя и прогнозом свойств.

Тема 5. Проектная работа

Практическое занятие: Обучающиеся создают собственный композиционный материал при консультативной поддержке инструкторов. Определяем механические и физические свойства материала, используя лабораторное оборудование кафедры МЦМ.

3. Формы аттестации и оценочные материалы

Формы контроля

Реализация программы «Инжиниринг и материаловедение» предусматривает текущий контроль, промежуточную и итоговую аттестацию обучающихся.

Текущий контроль проводится проверка знаний в форме короткого опроса, позволяющего выявить усвоение материала обучающимися. Вопросы, которые возникают у обучающихся в процессе обучения, выносятся на общее обсуждение также в диалоговой форме разбора материала.

Промежуточная аттестация проводится в форме защиты работы или проекта, участия в конференциях, выставках, фестивалях.

Итоговая аттестация проводится в форме: защита учебно-исследовательской или творческой работы и проекта (защита проекта).

Основным механизмом выявления результатов воспитания является педагогическое наблюдение.

Публичная презентация образовательных результатов программы осуществляется в форме: презентации проекта или выставки.

Средства контроля

Контроль освоения обучающимися программы осуществляется путем оценивания следующих параметров:

Критерии оценки	Уровни определения результатов				
	Минимальный уровень	Общий уровень	Продвинутый уровень		
Усвоение учебного материала	Обучающийся может пройти короткий опрос каждого раздела программы	Обучающийся может пройти короткий опрос каждого раздела программы и ответить на дополнительные вопросы	Обучающийся может пройти короткий опрос каждого раздела программы, ответить на дополнительные вопросы, вносит предложения вопросов для обсуждения		
Рабочие результаты	Обучающийся показывает знание	Выполнен учебный проект	Выполнено два или больше проектов в		

материала, учебный проект не выполнен.	рамках программы.

3.2 Итоговая аттестация

Итоговая аттестация проводится на основании совокупности проведённых опросов и выполненного проекта

4. Методическое обеспечение программы

Методы обучения, используемые в программе: словесные (устное объяснение материала), наглядные (презентация), практические (дети решают инженерные задачи), аналитические.

С целью стимулирования творческой активности учащихся будут использованы:

- метод проектов;
- метод погружения;
- методы сбора и обработки данных;
- игровые методики;
- исследовательский и проблемный методы;
- анализ справочных и литературных источников;
- поисковый эксперимент;
- опытная работа;
- обобщение результатов.

Для обеспечения наглядности и доступности изучаемого материала используются:

- наглядные пособия смешанного типа (слайды, видеозаписи, кинематические схемы);
- дидактические пособия (карточки с заданиями, рабочие тетради с практическими заданиями, раздаточный материал);
 - информационные материалы и технологические карты (инструкции, памятки)

Программа может быть реализована с применением электронного обучения и дистанционных образовательных технологий с использованием систем дистанционного обучения.

5. Организационно-педагогические ресурсы

5.1 Специализированные лаборатории и классы, основные установки и стенды Площадка: Компьютерный класс, аудитории с соответствующем оборудованием.

5.2 Оборудование и программное обеспечение:

Персональные операционные система:

Windows 7, Windows 8 и Windows 10.

5.3 Аппаратное обеспечение:

- 1) ЦТПО (Центр технологической поддержки образования) «Лаборатории цифрового производства Фаблаб» (РеИнж НИТУ МИСИС): ручной инструмент и электроинструмент.
 - 2) Кафедры металловедения цветных металлов (МЦМ):

- металлографический микроскоп и набор образцов,
- лазерный гравер для обработки металлических материалов;
- универсальная испытательная машина;
- лабораторно-исследовательское оборудование для исследования свойств металлов.

Кадровое обеспечение программы

Программа реализуется квалифицированными научно-педагогическими кадрами системы высшего профессионального образования, имеющим профессиональное образование в области, соответствующей профилю программы, и постоянно повышающим уровень профессионального мастерства. Для обеспечения образовательного процесса необходимо привлечение следующих специалистов:

- преподаватель,
- ассистент преподавателя,
- инструктор.

6. Список использованных источников

- 1. YouTube-канал ЦТПО МИСИС "FABLAB MOSCOW KIDS" URL: https://www.youtube.com/@FablabMoscowKIDS (дата обращения 05.02.2025)
- 2. Фетисов, Г. П. Материаловедение и технология металлов: учебник для вузов / Г. П. Фетисов и др.; под ред. Г. П. Фетисова. М., 2007
- 3. Самородский, А.С., Симоненко, В.Д. Технология. 5-11 классы. Проекты и исследования. М.: Вентана-Граф, 2020. 176 с.
- 4. Колесников, В.П., Колесников, П.В. Современные материалы в технике. М.: Лаборатория знаний, 2021. 256 с.
- 5. Григорьев, С.Н., Маслов, А.Р. Цифровое производство и аддитивные технологии. М.: Издательство МГТУ им. Н.Э. Баумана, 2022. 224 с.