Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский технологический университет «МИСИС»

УТВЕРЖДАЮ

И.о. проректора по образованию

Ю.И. Ришко

W. alzera 2025 r.

ДОПОЛНИТЕЛЬНАЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ОБЩЕРАЗВИВАЮЩАЯ ПРОГРАММА

Аддитивные технологии в материаловедении

НАПРАВЛЕННОСТЬ: ТЕХНИЧЕСКАЯ

Уровень: ознакомительный Возраст обучающихся 14 — 18 лет Срок реализации: 36 академических часов

Составитель (разработчик): А.А. Комиссаров, к.т.н, доцент, заведующий лабораторией «Гибридные наноструктурные материалы» Д.С. Рожкова студент института новых материалов и нанотехнологий Университета МИСИС

1 Пояснительная записка

1.1 Характеристика образовательной программы

Дополнительная общеобразовательная (общеразвивающая) программа дополнительного образования детей и взрослых, реализуемая Федеральным государственным автономным образовательным учреждением высшего образования «Национальный исследовательский технологический университет «МИСИС» (далее — НИТУ МИСИС, Университет МИСИС, Университет), «Аддитивные технологии в материаловедении» (далее — программа), определяет содержание дополнительного образования и представляет собой систему документов, разработанную и утвержденную Университетом МИСИС по сопровождению инженерных классов в школах г. Москва в соответствии с Уставом Университета МИСИС с целью формирования у школьников позитивного восприятия инженерных специальностей.

Направленность программы — техническая. Программа направлена на привлечение учащихся к применению аддитивных технологий в материаловедении и проектированию современных изделий.

Уровень освоения — ознакомительный. Учебная программа доступным для каждого языком и без применения сложных терминов погружает обучающихся в основы материаловедения, 3D-моделирования и 3D-печати, применяемых в различных сферах деятельности.

Новизна программы заключается в том, что в образовательных программах инженерно-технической направленности не представлено практическое применение достижений аддитивных технологий в области материаловедения, которые широко применяются в различных его отраслях в зависимости от конкретных условий эксплуатации. Кроме того, в программе каждый обучающийся разработает эскизный проект по индивидуальному заданию применительно к определённой области материаловедения.

Актуальность программы. Изучение предполагает расширение кругозора, аккумулирование знаний, развитие практических компетенций в области инженерно-технических дисциплин (материаловедение, технология производства, аддитивные технологии). Актуальность данной программы — зародить интерес к рассматриваемым направлениям инженерно-технических дисциплин с целью формирования будущего поколения инженеров.

Педагогическая целесообразность. Концептуальная идея предлагаемого курса состоит в формировании у обучающихся навыков и компетенций создания и применения на практике различных инновационных технических решений. Развитие научно-технического и творческого потенциала личности обучающегося при

освоении данной программы происходит преимущественно за счёт прохождения через разнообразные интеллектуальные и игровые задания. Программа разработана с опорой на общие педагогические принципы: актуальность, системность, последовательность, преемственность, индивидуальность, конкретность, направленность (выделение главного в образовательной работе), доступность и результативность.

1.2 Цель и задачи

Целью программы является формирование и развитие у обучающихся интеллектуальных и практических компетенций в области материаловедения, аддитивных технологий и проектирования современных изделий с применением инженерных инструментов.

Обучающие задачи:

- познакомить школьников с основными понятиями материаловедения и аддитивного производства;
- познакомить со свойствами различных материалов и со связью этих свойств с областями эксплуатации изделий;
- продемонстрировать основные способы получения изделий,
 произведенных с помощью аддитивных технологий;
- расширить знания школьников о теоретических основах подбора материалов для различных областей применения;
- формирование устойчивой мотивации к дальнейшему изучению материаловедения;
- актуализировать знания о применении различных инженерных инструментов при проектировании.

Развивающие задачи:

- обучение отстаиванию своей точки зрения и способности принятия решений;
- развитие аналитического мышления и умения творчески представлять свои идеи;
 - развитие творческого и инженерного мышления;
 - овладение навыками анализа и обработки экспериментальных данных;
- развитие памяти, внимания, способности логического мышления,
 способности к анализу и концентрации внимания на главном у обучающихся;
- помощь в определении индивидуального вектора развития в перспективных профессиях ближайшего будущего.

Воспитательные здачи:

 формирование навыков работы в команде, профессионально значимых и личностных качеств, творческого подхода к выполняемым заданиям.

Отличительной особенностью программы является то, что она реализуется в короткие сроки за счет нестандартных методов изучения материала, простого объяснения сложных явлений и междисциплинарных связей с применением современного программного обеспечения, что поддерживает высокую мотивацию обучающихся и результативность занятий.

Возраст обучающихся: 14-18 лет.

Сроки реализации: 36 академических часов.

Формы и режим занятий

Формы проведения занятий: лекции, практические занятия, мастер-классы.

Формы организации деятельности: групповые и индивидуально-групповые.

Наполняемость группы: 15-25 человек.

Режим занятий: 1-2 занятия в неделю по 2-4 академических часа.

Ожидаемые результаты

В результате освоения программы, обучающиеся будут знать:

- общие сведения о свойствах материалов;
- общие сведения о современных методах аддитивных технологий;
- теоретические основы подбора материалов для изделий различных областей применения;
- основы применения программ 3D-моделирования для проектирования и конструирования изделий.

будут уметь:

- определять основные свойства материалов;
- оценивать возможность применения различных технологических приемов для достижения поставленных материаловедческих задач;
 - аргументированно отстаивать свою точку зрения;
 - работать в команде и принимать решения;
 - работать в программе SolidWorks;
 - творчески визуализировать свои идеи.

2 Учебный (тематический) план

Ma	Раздел / Тема	Аудиторные учебные занятия			Форма аттестации/	тость
№ п/ п		Всего ауд. работ	Лекции	Практическ ие занятия	контроля	Трудоемкость
1	Модуль 1. Введение в материаловедение	8	2	6		8
1.1	Основные понятия	3	1	2		3
1.2	Исследование структуры металлов. Металлографический анализ	2		2	Практическая работа	2
1.3	Механические свойства. Взаимосвязь между микроструктурой и свойствами	3	1	2	Практическая работа	3
2	Модуль 2. Аддитивные технологии	2	2			2
3	Модуль 3. Моделирование	14	4	10		14
3.1	Основы моделирования в среде SolidWorks	4	1	3	Практическая работа	4
3.2	Создание простых трехмерных моделей	4	1	3	Практическая работа	4
3.3	Создание сложных трехмерных моделей	4	1	3	Практическая работа	4
3.4	3D-печать созданных трехмерных деталей	2	1	1		2
4	Модуль 4. Проектная деятельность	12	2	10		12
4.1	Тематика проектных и исследовательских работ	2	1	1		2
4.2	Итоговый проект. Подготовка презентации	3		3		3
4.3	Подготовка доклада для защиты проекта	4	1	3		4
4.4	Защита проектов	3		3	Презентация	3
Итоговая аттестация					Проводится на основании совокупности выполненных промежуточных практических работ и подготовки презентации проекта	
Ит	000	36	10	26		

3 Содержание программы

Модуль 1. Введение в материаловедение (8ч.)

1.1. Основные понятия

Лекция (1 а.ч.). Основные термины материаловедения, актуальные проблемы и тренды области.

Практическое занятие (2 а.ч.). Экскурсия по подразделениям ПИШ МАСТ и НИЛ «ГНМ», знакомство с оборудованием и актуальными работами научных групп.

1.2. Исследование структуры металлов. Металлографический анализ

Практическое занятие (2 а.ч.). Изучение устройства металлографического микроскопа и принципов формирования изображения, исследование металлических образцов с различной микроструктурой.

1.3. Механические свойства. Взаимосвязь между микроструктурой и свойствами

Лекция (1 а.ч.). Статические и динамические испытания. Методы определения механических свойств, их взаимосвязь со структурой материала.

Практическое занятие (2 а.ч.). Проведение испытаний по определению механических свойств металлических образцов: твердость, прочность и ударная вязкость.

Модуль 2. Аддитивные технологии (2 ч.)

Лекция (1 а.ч.). Актуальные проблемы в области аддитивных технологий в материаловедении. Основные понятия 3D-печати.

Лекция (1 а.ч.). Основные виды 3D-принтеров, принципы и особенности их работы.

Модуль 3. Моделирование (14ч.)

3.1. Основы моделирования в среде SolidWorks

Пекция (1 а.ч.). Базовые принципы моделирования. Создание чертежей объектов по заданным параметрам, постановка фиксирующих размеров.

Практическое занятие (3 а.ч.). Создание самостоятельных эскизов модели по исходным данным, простановка фиксирующих размеров.

3.2. Создание простых трехмерных моделей

Лекция (1 а.ч.). Создание простых трехмерных моделей.

Практическое занятие (3 а.ч.). Создание простых трехмерных моделей по исходным чертежам. Создание простых трехмерных моделей в рамках индивидуальных и групповых проектов.

3.3. Создание сложных трехмерных моделей

Лекция (1 а.ч.). Создание сложных трехмерных моделей.

Практическое занятие (3 а.ч.). Создание сложных трехмерных моделей по исходным чертежам. Создание сложных трехмерных моделей в рамках индивидуальных и групповых проектов.

3.4. 3D-печать созданных трехмерных деталей

Лекция (1 а.ч.). Особенности работы на FDM и фотополимерном 3D-принтерах.

Практическое занятие (1 а.ч.). Перевод модели в формат для печати, разбор основных параметров печати. Работа на принтере с созданной моделью.

Модуль 4. Проектная деятельность (12ч.)

4.1. Тематика проектных и исследовательских работ

Лекция (1 а.ч.). Проектная деятельность. Основные этапы и механизмы реализации проекта. Определение цели, задач и методик исследования. Структура презентации для научных выступлений.

Практическое занятие (1 а.ч.). Формирование проектных команд, выбор тематики исследований. Определение целей и задач, актуальности и новизны исследования, а также методов и предполагаемых выводов проекта.

4.2. Итоговый проект. Подготовка презентация

Практическое занятие (3 а.ч.). Формулирование этапов реализации итогового проекта, подготовка презентации (индивидуальной или групповой), ее структурирование и визуализация.

4.3. Подготовка доклада для защиты проекта

Лекция (1 а.ч.). Структура доклада. Основные требования, предъявляемые к информационной составляющей доклада.

Практическое занятие (3 а.ч.). Внесение поправок и изменений в доклад, презентацию. Консультирование по вопросу представления проекта на научно-практической конференции. Предзащита проектов.

4.4. Защита проектов

Практическое занятие (3 а.ч.). Защита проекта в аудитории, совместное подведение итогов.

4 Формы аттестации и контроля

В процессе обучения будут применяться различные методы контроля, в том числе с использованием современных технологий.

Текущий контроль. Текущий контроль проводиться с целью непрерывного отслеживания уровня усвоения материала и стимулирования обучающихся к саморазвитию. Для реализации текущего контроля в процессе объяснения теоретического материала педагог обращается к учащимся с вопросами и выдает короткие задания; практические занятия сопровождаются выполнением практических заданий с целью систематизировать, обобщить и закрепить материал.

Итоговый контроль. Презентация проекта.

Требования к выполнению практических работ

Практические работы выполняются в соответствующих лабораториях и компьютерных классах НИТУ МИСИС под наблюдением преподавателя с использованием необходимого программного обеспечения. Присутствие на практическом занятии и выполнение практической работы во время занятия оценивается, как зачтено.

Требования к выполнению презентации

Визуальный материал презентации должен быть понятным и доступным, выступление должно проводиться по таймингу.

Требования к структуре презентации:

- Шрифт − Times New Roman, минимальный размер текста − 18 пт;
- Текст на слайдах должен хорошо читаться на любом фоне;
- Необходимо использовать максимальное пространство экрана (слайда),
 например, растянув рисунки;
- По возможности используйте верхние ³/₄ площади экрана (слайда), т.к. с последних рядов нижняя часть экрана обычно не видна;
- Первый слайд презентации должен содержать тему, ФИО докладчика;
- В конце заголовков точка не ставится;
- Перед использованием скриншотов проверьте текст на наличие ошибок, чтобы на изображении не остались красные (зеленые) подчеркивания ошибок;
- При использовании скриншотов лишние элементы (панели инструментов, меню, пустой фон и т.д.) необходимо обрезать;
- Не перегружайте слайды анимационными эффектами. Для смены слайдов используйте один и тот же анимационный эффект;
- На слайд нужно вынести самое основное, главное. Устный текст не должен дублировать текст на слайдах;
- Требования к содержательной части презентации: наличие дополнительных средств визуализации, возможность вариативности решения.

Требования к выполнению проекта

Проект выполняется одним участником либо группой до 3-х человек. По выбранной тематике должен быть подготовлен доклад и презентация.

Оценивание проекта

Творческая работа (проект) оценивается положительно, если:

- Цель и задачи работы определены и чётко сформулированы;
- План работы реалистичен, характеризуется оригинальностью идей, исследовательским подходом, подобранным и детально проанализированным материалом;
- Содержание работы изложено логично;
- Итоговое решение проблемы отличается творческим подходом;
- Сделанные выводы свидетельствуют о самостоятельности выполнения работы.

Форма защиты творческой работы (проекта) - очная презентация.

Формы и содержания итоговой аттестации.

Итоговая аттестация проводится на основании совокупности выполненных промежуточных практических работ и подготовки презентации проекта.

Оценивание: зачтено/не зачтено.

5 Организационно-педагогические условия реализации программы

5.1. Методическое обеспечение программы

Методы обучения, используемые в программе: словесные (устное объяснение материала), наглядные (презентация), практические (дети решают конструкторские задачи), аналитические.

С целью стимулирования творческой активности учащихся будут использованы:

- метод проектов;
- метод погружения;
- методы сбора и обработки данных;
- игровые методики;
- исследовательский и проблемный методы;
- анализ справочных и литературных источников;
- опытная работа;
- обобщение результатов.

Для обеспечения наглядности и доступности изучаемого материала будут использоваться:

- наглядные пособия смешанного типа (слайды, видеозаписи, кинематические схемы);
- дидактические пособия (карточки с заданиями, рабочие тетради с практическими заданиями, раздаточный материал).

5.2. Организационно-педагогические ресурсы

5.2.1 Специализированные лаборатории и классы, основные установки и стенды

Площадка: г. Москва, Ленинский проспект, д. 4 (корпус Б НИТУ МИСИС), компьютерные классы и аудитории с соответствующим оборудованием в ПИШ МАСТ и НИЛ «ГНМ».

5.2.2 Оборудование и программное обеспечение

Операционная система:

Windows 7, Windows 8 и Windows 10 с установленными пакетами программ Компас 3d, SolidWorks, Cura, Thixomet.

Аппаратное обеспечение:

- 1. ПЭВМ по количеству учащихся с подключением к сети Интернет. Минимальные системные требования:
- Операционная система Windows (XP, Vista, 7, 8) или MacOS (10.6, 10.7, 10.8);
 - 2 ГБ оперативной памяти;
 - Процессор 1.5 ГГц;
 - 4 Гб свободного дискового пространства;
 - Разрешение экрана 1920*1080;
 - Microsoft Silverlight 5.0;
 - Microsoft.NET 4.0
 - 2. Среда моделирования SolidWorks.

5.2.3 Кадровое обеспечение программы

Реализатор программы: профессорско-педагогический состав Университета МИСИС

Список литературы

- 1. Гуляев А.П. Металловедение. Учебник для ВУЗов. 6-е изд., перераб. и доп. М.: Металлургия, 1986. 544 с.;
- 2. Лахтин М.Ю., Леонтьева В.П. Материаловедение: учебник для машиностроительных ВУЗов 2-е изд., перераб. и доп. М.: Машиностроение. 1980. –493 с., ил.;
- 3. Применение современных инженерных инструментов для конструирования: метод. указания / А.Е. Кривенко, С.Г. Губанов, О.Л. Дербенева, В.В. Зотов. Москва: Издательский Дом НИТУ «МИСиС», 2021. 43 с.;
- 4. Чижик С. А. Аддитивные технологии: современное состояние и перспективы. -2015.;
- 5. Мухаметрахимов Р. Х., Вахитов И. М. Аддитивная технология возведения зданий и сооружений с применением строительного 3D-принтера //Известия Казанского государственного архитектурно-строительного университета. 2017. № 4 (42). С. 350-359.