Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский технологический университет «МИСИС»

УТВЕРЖДАЮ

Проректор по образованию

А.И. Воронин

« 01 » деврани 2025 г.

ДОПОЛНИТЕЛЬНАЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ОБЩЕРАЗВИВАЮЩАЯ ПРОГРАММА

Основы прикладной электроники: программирование без кода

НАПРАВЛЕННОСТЬ: ТЕХНИЧЕСКАЯ

Уровень: вводный

Возраст обучающихся 12 - 18 лет

Срок реализации: 10 академических часов

Составитель (разработчик): Поселеннов А.Д. сотрудник НИТУ МИСИС, Техник РеИнж

г. Москва 2025 год

1. Пояснительная записка

1.1. Характеристика образовательной программы

Дополнительная общеобразовательная (общеразвивающая) программа дополнительного образования детей и взрослых, реализуемая Федеральным государственным автономным образовательным учреждением высшего образования «Национальный исследовательский технологический университет «МИСИС» (далее — НИТУ МИСИС, Университет МИСИС, Университет) «Основы прикладной электроники программирование без кода» разработана на основе и в соответствии с нормативно-правовыми документами:

- Федеральный закон Российской Федерации от 29 декабря 2012 г. № 273-ФЗ «Об образовании в Российской Федерации» (с изм. на 17.02.2023 г.). (далее -273-ФЗ);
- Концепция развития дополнительного образования детей до 2030 года (с изм. на 15.05.2023 г.) (утверждена распоряжением Правительства Российской Федерации от 31 марта 2022 г. № 678-р).
- Порядок организации и осуществления образовательной деятельности по дополнительным общеобразовательным программам (утвержден приказом Министерства просвещения Российской Федерации от 27 июля 2022 г. № 629) (далее Приказ № 629).
- Целевая модель развития региональных систем дополнительного образования детей (утверждена приказом Министерства просвещения Российской Федерации от 3 сентября 2019 г. № 467) (с изм. на 21.04.2023).
- Приказ Министерства Просвещения Российской Федерации от 30.09.2020 г. № 533 «О внесении изменений в порядок организации и осуществления образовательной деятельности по дополнительным общеобразовательным программам, утверждённый приказом Министерства Просвещения Российской Федерации от 9 ноября 2018 г. № 196»;
- Приказ Министерства Просвещения Российской Федерации от 09.11.2018 г. № 196 «Об утверждении порядка организации и осуществления образовательной деятельности по дополнительным общеобразовательным программам»;
- Постановление Главного государственного санитарного врача Российской Федерации от 28 сентября 2020 г. № 28 «Об утверждении санитарных правил СП 2.4.3648-20 «Санитарноэпидемиологические требования к организациям воспитания и обучения, отдыха и оздоровления детей и молодёжи»;
- Постановление Главного государственного санитарного врача Российской Федерации от 28 января 2021 г. № 2СанПиН 1.2.3685-21 «Санитарные нормативы и требования к обеспечению безопасности и (или) безвредности для человека факторов среды обитания» (раздел VI «Гигиенические нормативы по устройству, содержанию и режиму работы организаций воспитания и обучения отдыха и оздоровления детей и молодежи»);
- Письмо Министерства образования и науки РФ от 18.11.2015 г. № 09-3242 «О направлении информации» (вместе с «Методическими рекомендациями по проектированию дополнительных общеразвивающих программ (включая разноуровневые программы)»;
- Приказ Департамента образования города Москвы от 17.12.2014 г. № 922 «О мерах по развитию дополнительного образования детей» (с изм. на 24.10.2022);
- Приказ Департамента образования и науки города Москвы от 3.04.2023 г. № 271 «О внесении изменений в приказ Департамента образования и науки города Москвы от 17 декабря 2014 года № 922».:
- Методические рекомендации по реализации дополнительных общеобразовательных программ с применением электронного обучения и дистанционных образовательных технологий: приложение к письму Министерства просвещения Российской Федерации от 31 января 2022 г. № ДГ-245/06;
- Локальные нормативные акты по образовательной деятельности Университета.

Направленность программы – техническая.

Уровень освоения – вводный.

Цель программы — профориентация обучающихся и развитие мотивации к техническому творчеству, развитие познавательной активности детей через обучение основам дизайна и

технологий персонального цифрового производства, а также содействие наблюдательности в познании мира как важного качества современного ученого и инженера.

Актуальность программы

Человечество продолжает переживать изменения в развитии технологий, соизмеримые по своим масштабам с такими свершениями, как промышленная революция, становление сельского хозяйства, а возможно даже, и само начало использования орудий труда. На протяжении всей обозримой истории развития технологий используемые человеком инструменты становились лишь более сложными и менее доступными. Для освоения и эффективного использования средств производства требовалась все более и более глубокая специализация работников, а для владения ими — все более масштабные инвестиции. Лишь в новом тысячелетии мы можем наблюдать и обратную картину. Появление и развитие цифровых производственных технологий привело к существенному сближению таких явлений, как материя и информация. Подобно тому, как прогресс в развитии компьютеров привел к многократному удешевлению процессов получения, хранения, передачи и распространения информации, развитие технологий цифрового производства ведет к демократизации производственных процессов, что создает предпосылки для глубочайших изменений в техносфере. Сохраняется надежда, что в следующие несколько десятилетий мы станем свидетелями постепенного перехода от концентрированных производственных систем с глобальными сетями поставки ресурсов и дистрибуции товаров к распределенным системам. осваивающим локальные ресурсы и работающим на локальные рынки, то есть от разрушительной для планеты системы массового потребления и массового производства к производству основных товаров по требованию (производство продукта там где он нужен, когда он нужен и в количестве в котором он нужен). Уже в среднесрочной перспективе это приведет к снижению роли ископаемых ресурсов на глобальном рынке и возвращению производства значительной части товаров в развитые страны. Происходящие и ожидаемые изменения производственных систем уже сегодня диктуют качественно новые требования к подготовке специалистов. В мире, в котором постепенно размывается граница между информацией и материей, неизбежно будет исчезать деление на дизайнеров, инженеров и программистов. Проектный и междисциплинарный подход в образовании должен стать основным на всех этапах подготовки технических творческих кадров, включая самые ранние.

Педагогическая целесообразность

Концептуальная идея предлагаемого курса состоит в формировании у обучающихся навыков инженерно-технического творчества и исследовательских навыков. Обучающиеся в процессе наблюдения, исследования, экспериментирования, приобретут новые знания и навыки, которые помогут сформировать свой собственный вектор в выборе своей будущей профессии.

1.2. Цель и задачи

Цель - сформировать мотивированное стремление обучающегося к познанию новых современных инновационных направлений в области технологий цифрового производства, материаловедения, прикладной электроники и промышленного/предметного дизайна.

Задачи:

Обучающая:

• научить основам эскизирования различных объектов;

- научить определять задачи и функционал изделий;
- научить основам алгоритмизации и программирования с использованием систем графического программирования;
- научить самостоятельно решать технические задачи в процессе составления схем электронных устройств;
- научить основам электротехники и принципам работы микроконтроллеров типа «Arduino»;
- научить подбирать датчики и актуаторы для создания макетов заданного устройства.

Развивающие:

- развить логическое мышление, пространственное воображение, творческие способности;
- развивать образное, техническое мышление и умение выразить свой замысел в проекте;
- развить познавательные, интеллектуальные и творческие способности обучающихся, в процессе создания моделей и проектов, умение работать в небольших группах, этику общения;
- развить умение довести решение задачи до работающей модели;
- развить смекалку, находчивость, изобретательность и устойчивый интерес к поисковой творческой деятельности;
- развить умение излагать мысли в четкой логической последовательности, отстаивать свою точку зрения, анализировать ситуацию и самостоятельно находить ответы на вопросы путем логических рассуждений;
- развить умение работать над проектом в команде, эффективно распределять обязанности.

Воспитательные:

- воспитать чувство товарищества, чувство личной ответственности;
- воспитать нравственные качества по отношению к окружающим (доброжелательность, чувство товарищества и т.д.).
- воспитать уважение к интеллектуальной собственности, культуру правомочных заимствований и неприятие плагиата.

Отличительной особенностью программы является то, что она реализуется в короткие сроки за счет сокращения теоретического материала, нестандартных методов изучения материала, простого объяснения сложных явлений и междисциплинарных связях. Это поддерживает высокую мотивацию обучающихся и результативность занятий.

Возраст: 12 - 18 лет

Сроки реализации: 1-4 недель. 1 занятие от 2 до 4-х академических часов. Общее количество учебных часов, запланированных на весь период обучения -10 академических часов.

Формы и режим занятий

Формы проведения занятий: лекции, практические занятия, мастер-классы. Формы организации деятельности: групповые и индивидуально-групповые. Наполняемость группы: до 25 человек.

Ожидаемые результаты.

В результате освоения программы обучающиеся будут знать:

- основы электротехники в контексте работы с микроконтроллерами типа «Arduino»;
- основы прототипирования изделий с использованием микроконтроллеров типа «Arduino» и систем для графического программирования устройств;
- основы управления периферией с микроконтроллеров типа «Arduino»;

будут уметь:

- выбирать необходимые датчики и актуаторы («периферию») для прототипирования устройств, управляемых микроконтроллерами типа «Arduino»;
- подключать и программировать периферию;
- использовать для программирования систему графического программирования ход.io:
- планировать и распределять работу над общим проектом между членами команды;
- справляться с индивидуальными заданиями, составляющими часть общей задачи.

2. Содержание программы

2.1. Учебно-тематический план

№ п/п	Название раздела/темы	Количество часов			Формы аттестации/
		всего	теория	практика	контроля
1.	Вводное занятие	2	2	-	
2.	Электроника и основы электротехники	2	-	2	Опрос
3.	Сборка и программирование устройств: управление светом	2	-	2	Опрос
4.	Сборка и программирование устройств: умные устройства	2	-	2	Опрос
5.	Проектная работа	2	-	2	Защита проекта
	Итого:	10	2	8	

2.2. Рабочая программа

Тема 1. Вводное занятие (2 ч.)

Теоретическая часть. Идеология персонального цифрового производства. Знакомство с открытыми платформами, содержащими проекты в области прикладной электроники. Устройство микроконтроллера на примере Arduino. Основы электротехники. Правила работы с прикладной электроникой и компонентами. Правила работы с мультиметром.

Практическая часть. Измерение показаний электронных компонент и модулей микроконтроллера с использованием мультиметра. Работа с макетной платой. Сборка и подключение простой схемы управления светодиодами.

Тема 2. Электроника и основы электротехники. (2 ч.)

Практическая часть. Работа с макетной платой. Соорка и подключение учебных схем управления датчиками и актуаторами. Измерение показаний электронных компонент в схемах.

Программирование управления периферией (датчиками и актуаторами) с использованием системы графического программирования XOD.IO

Тема 3. Сборка и программирование устройств: управление светом (2 ч.)

Практическая часть. Работа с макетной платой. Сборка и подключение учебных схем управления датчиками и актуаторами. Измерение показаний электронных компонент в схемах.

Программирование управления периферией (датчиками и актуаторами) с использованием системы графического программирования XOD.IO.

Тема 4. Сборка и программирование устройств: умные устройства. (2 ч.)

Практическая часть. Работа с макетной платой. Сборка и подключение учебных схем управления датчиками и актуаторами. Измерение показаний электронных компонент в схемах.

Программирование управления периферией (датчиками и актуаторами) с использованием системы графического программирования XOD.IO.

Тема 5. Проектная работа (2 ч.)

Практическая часть. Обучающиеся прорабатывают идею проекта и создают собственную модель макета проекта при консультативной поддержке инструкторов.

3. Формы аттестации и оценочные материалы

Формы контроля

Реализация программы «Основы прикладной электроники: программирование без кода» предусматривает текущий контроль, промежуточную и итоговую аттестацию обучающихся.

Текущий контроль проводится проверка знаний в форме короткого опроса, позволяющего выявить усвоение материала обучающимися. Вопросы, которые возникают у обучающихся в процессе обучения, выносятся на общее обсуждение также в диалоговой форме разбора материала.

Промежуточная аттестация проводится в форме защиты работы или проекта, участия в конференциях, выставках, фестивалях.

Итоговая аттестация проводится в форме: защита учебно-исследовательской или творческой работы и проекта (защита проекта).

Основным механизмом выявления результатов воспитания является педагогическое наблюдение.

Публичная презентация образовательных результатов программы

осуществляется в форме: презентации проекта или выставки.

Средства контроля

Контроль освоения обучающимися программы осуществляется путем оценивания следующих параметров:

Критерии	Уровни определения результатов				
оценки	Минимальный уровень	Общий уровень	Продвинутый уровень		

Усвоение учебного материала	Обучающийся может пройти короткий опрос каждого раздела программы	Обучающийся может пройти короткий опрос каждого раздела программы и ответить на дополнительные вопросы	Обучающийся может пройти короткий опрос каждого раздела программы, ответить на дополнительные вопросы, вносит предложения вопросов для обсуждения
Рабочие результаты	Обучающийся показывает знание материала, учебный проект не выполнен.	Выполнен учебный проект	Выполнено два или больше проектов в рамках программы.

3.2 Итоговая аттестания

Итоговая аттестация проводится на основании совокупности проведённых опросов и выполненного проекта

4. Методическое обеспечение программы

Методы обучения, используемые в программе: словесные (устное объяснение материала), наглядные (презентация), практические (дети решают инженерные задачи), аналитические. С целью стимулирования творческой активности учащихся будут использованы:

- метод проектов;
- метод погружения;
- методы сбора и обработки данных;
- игровые методики;
- исследовательский и проблемный методы;
- анализ справочных и литературных источников;
- поисковый эксперимент;
- опытная работа;
- обобщение результатов.

Для обеспечения наглядности и доступности изучаемого материала используются:

- наглядные пособия смешанного типа (слайды, видеозаписи, кинематические схемы);
- дидактические пособия (карточки с заданиями, рабочие тетради с практическими заданиями, раздаточный материал);
- информационные материалы и технологические карты (инструкции, памятки)

Программа может быть реализована с применением электронного обучения и дистанционных образовательных технологий с использованием систем дистанционного обучения.

5. Организационно-педагогические ресурсы

- **5.1** Специализированные лаборатории и классы, основные установки и стенды Площадка: Компьютерный класс, аудитории с соответствующем оборудованием.
- 5.2 Оборудование и программное обеспечение: Персональные операционные система:

Windows 7, Windows 8 и Windows 10.

5.3 Аппаратное обеспечение:

-1- 4-1

Программа реализуется на оборудовании ЦТПО (Центр технологической поддержки образования) «Лаборатории цифрового производства Фаблаб» (РеИнж НИТУ МИСИС):

- станок лазерной резки/гравировки LaserJet,
- станок лазерной резки/гравировки Trotec,
- 3D принтеры технологии FFF,
- ручной инструмент и электроинструмент.

Кадровое обеспечение программы

Программа реализуется квалифицированными научно-педагогическими кадрами системы высшего профессионального образования, имеющим профессиональное образование в области, соответствующей профилю программы, и постоянно повышающим уровень профессионального мастерства. Для обеспечения образовательного процесса необходимо привлечение следующих специалистов:

- преподаватель,
- ассистент преподавателя,
- инструктор.

6. Список литературы

- 1. Васильев, Н. П. Введение в гибридные технологии разработки мобильных приложений / Н. П. Васильев, А. М. Заяц. 3-е изд., стер. Санкт-Петербург : Лань, 2022. 160 с. ISBN 978-5-507-44502-8. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/230387 (дата обращения: 00.00.0000). Режим доступа: для авториз. пользователей.
- 2. Гайрабекова, Т. И. Учебное пособие по дисциплине «Алгоритмы и алгоритмические языки» : учебное пособие / Т. И. Гайрабекова. Грозный : ЧГУ, 2021. 133 с. Текст: электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/264020 (дата обращения: 00.00.0000). Режим доступа: для авториз. пользователей.
- 3. Joyce Farrell Just Enough Programming Logic and Design. ISBN: 978-1-337-11826-4 изд. Cengage Learning, 2018.