Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский технологический университет «МИСИС»

УТВЕРЖДАЮ

И.о. проректора по образованию

∸Ю.И. Ришко

«<u>12» abiyera</u> 2025 r.

ДОПОЛНИТЕЛЬНАЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ОБЩЕРАЗВИВАЮЩАЯ ПРОГРАММА

3D печать и техническое творчество

НАПРАВЛЕННОСТЬ: ТЕХНИЧЕСКАЯ

Уровень: ознакомительный Возраст обучающихся 12 - 18 лет Срок реализации: 36 академических часов

Составитель (разработчик): Старший преподаватель кафедры МЦМ НИТУ МИСИС Тавитов $A.\Gamma$

1 Пояснительная записка

1.1 Характеристика образовательной программы

Дополнительная общеобразовательная (общеразвивающая) программа дополнительного образования детей и взрослых, реализуемая Федеральным государственным автономным образовательным учреждением высшего образования «Национальный исследовательский технологический университет «МИСИС» (далее — НИТУ МИСИС, Университет МИСИС, Университет) «Технологии и материалы цифрового производства» разработана на основе и в соответствии с нормативно-правовыми документами:

- Федеральный закон Российской Федерации от 29 декабря 2012 г. № 273-ФЗ «Об образовании в Российской Федерации» (с изм. на 17.02.2023 г.). (далее 273-ФЗ).
- Концепция развития дополнительного образования детей до 2030 года (с изм. на 15.05.2023 г.) (утверждена распоряжением Правительства Российской Федерации от 31 марта 2022 г. № 678-р).
- Порядок организации и осуществления образовательной деятельности по дополнительным общеобразовательным программам (утвержден приказом Министерства просвещения Российской Федерации от 27 июля 2022 г. № 629) (далее Приказ № 629).
- Целевая модель развития региональных систем дополнительного образования детей (утверждена приказом Министерства просвещения Российской Федерации от 3 сентября 2019 г. № 467) (с изм. на 21.04.2023).
- Приказ Министерства Просвещения Российской Федерации от 30.09.2020 г. № 533 «О внесении изменений в порядок организации и осуществления образовательной деятельности по дополнительным общеобразовательным программам, утвержденный приказом Министерства Просвещения Российской Федерации от 9 ноября 2018 г. № 196».
- Приказ Министерства Просвещения Российской Федерации от 09.11.2018 г. № 196 «Об утверждении порядка организации и осуществления образовательной деятельности по дополнительным общеобразовательным программам».
- Постановление Главного государственного санитарного врача Российской Федерации от 28 сентября 2020 г. № 28 «Об утверждении санитарных правил СП 2.4.3648-20 «Санитарно-эпидемиологические требования к организациям воспитания и обучения, отдыха и оздоровления детей и молодёжи».
- Постановление Главного государственного санитарного врача Российской Федерации от 28 января 2021 г. № 2 СанПиН 1.2.3685-21 «Санитарные нормативы и требования к обеспечению безопасности и (или) безвредности для человека факторов среды обитания» (раздел VI «Гигиенические нормативы по устройству, содержанию и режиму работы организаций воспитания и обучения отдыха и оздоровления детей и молодежи»).
- Письмо Министерства образования и науки РФ от 18.11.2015 г. № 09-3242 «О направлении информации» (вместе с «Методическими рекомендациями по проектированию дополнительных общеразвивающих программ (включая разноуровневые программы)».
- Приказ Департамента образования города Москвы от 17.12.2014 г. № 922 «О мерах по развитию дополнительного образования детей» (с изм. на 24.10.2022).
- Приказ Департамента образования и науки города Москвы от 3.04.2023 г. № 271 «О внесении изменений в приказ Департамента образования и науки города Москвы от 17 декабря 2014 года № 922».

- Методические рекомендации по реализации дополнительных общеобразовательных программ с применением электронного обучения и дистанционных образовательных технологий: приложение к письму Министерства просвещения Российской Федерации от 31 января 2022 г. №ДГ-245/06.
 - Локальные нормативные акты по образовательной деятельности Университета.

Направленность программы – техническая.

Уровень освоения – ознакомительный.

Цель программы – профориентация обучающихся и развитие мотивации к техническому творчеству, развитие познавательной активности детей через обучение основам 3D печати и решение прикладных задач, а также расширение кругозора обучающихся.

Актуальность программы

Современные технологии трехмерной печати активно внедряются во многих отраслях промышленности — машиностроении, строительстве, медицине, дизайне и даже искусстве. По мере развития технологий увеличивается потребность в квалифицированных специалистах, способствующих эффективному использованию оборудования и материалов. Новые материалы, методы проектирования и процессы производства постоянно совершенствуются. Важной особенностью технологий 3D печати является возможность работы с различными материалами и изделиями высокой сложности. Современные образовательные программы должны обеспечивать обучающимся быструю адаптированность к изменениям и освоению новых инструментов и техник, необходимых для повышения производственной эффективности и разработки совершенно новых продуктов.

Педагогическая целесообразность

Основная концепция образовательного курса направлена на развитие у обучающихся ключевых компетенций в области инженерно-технического творчества и исследовательской деятельности. В ходе обучения участники получат возможность проводить наблюдения, выполнять исследовательские работы и осуществлять практические эксперименты. Такой подход позволит не только приобрести новые знания и практические навыки, но и поможет определить наиболее подходящее направление для дальнейшего профессионального развития и выбора будущей специальности.

1.2 Цель и задачи

Цель – пробуждении и укреплении у обучающихся устойчивого интереса к изучению передовых технологических решений и современных направлений научно-технического развития.

Задачи

Обучающие:

- научить определять задачи и функционал изделий;
- научить подбирать технологию 3D печати под задачу;
- научить подбирать материал для 3D печати под задачу;
- научить основам компьютерного проектирования в 3D системах на основе комбинации геометрических примитивов и булевых операций;
- научить оптимизации геометрии в процессе проектирования с учетом особенностей технологии 3D печати;

- научить подготавливать формы для литья, изготовленные с помощью технологии 3D печати.

Развивающие:

- развить логическое мышление, пространственное воображение, творческие способности;
 - развивать образное, техническое мышление и умение выразить свой замысел в проекте;
- развить познавательные, интеллектуальные и творческие способности обучающихся, в процессе создания моделей и проектов, умение работать в небольших группах, этику общения;
 - развить умение довести решение задачи до работающей модели;
- развить смекалку, находчивость, изобретательность и устойчивый интерес к поисковой творческой деятельности;
- развить умение излагать мысли в четкой логической последовательности, отстаивать свою точку зрения, анализировать ситуацию и самостоятельно находить ответы на вопросы путем логических рассуждений;
- развить умение работать над проектом в команде, эффективно распределять обязанности.

Воспитательные:

- воспитать чувство товарищества, чувство личной ответственности;
- воспитать нравственные качества по отношению к окружающим (доброжелательность, чувство товарищества, ответственность);
- воспитать уважение к интеллектуальной собственности, культуру правомочных заимствований и неприятие плагиата.

Отличительной особенностью программы является то, что она реализуется в короткие сроки за счет сокращения теоретического материала, большого объема практических задач, простого объяснения сложных явлений и командной работы, что поддерживает высокую мотивацию обучающихся и обеспечивает результативность занятий.

Возраст: 12-18 лет.

Сроки реализации: 36 академических часов.

Формы и режим занятий

Формы проведения занятий: лекции, практические занятия, мастер-классы, экскурсии. Формы организации деятельности: групповые и индивидуально-групповые.

Наполняемость группы: 20-30 человек.

Время обучения – 2-18 часов в неделю. При сохранении общего количества часов программы могут быть реализованы в более короткий срок за счет занятости школьников в каникулярный период и выходные и праздничные дни.

Ожидаемые результаты

В результате освоения программы, обучающиеся будут знать:

- основные и продвинутые техники 3D печати;
- отличие термопластов и реактопластов;
- принцип работы FFF 3D принтера, печатающего термопластичным прутком;
- принцип работы SLA 3D принтера, печатающего фотополимерными смолами;
- принцип работы LDM 3D принтера, печатающего керамическими массами;
- ключевые свойства материалов (полимеры, керамика), применяющихся в 3D печати;
- принципы работы с mesh-поверхностями.

будут уметь:

- выбирать технологию 3D печати для прототипирования изделий;
- готовить 3D компьютерные модели объектов для изготовления с использованием выбранной технологии 3D печати;
 - подготавливать 3D принтер и ручные инструменты к работе;
- выбирать основные технологические параметры и режимы 3D печати в соответствии с типом изделия;
 - планировать и распределять работу над общим проектом между членами команды;
 - справляться с индивидуальными заданиями, составляющими часть общей задачи.

2 Содержание программы

2.1 Учебно-тематический план

Программа состоит из четырех разделов, каждый из которых включает в себя лекции, практические занятия.

Таблица 1 - Учебно-методический план

	Раздел / Тема	Аудиторн	ные учебн	Формы	
№ п/п		Всего	Лекции	Практические занятия	аттестации (контроля)
		ауд. часов	Лекции		(Kon i posin)
1	Блок 1. Введение в 3D печать FFF	12	2	10	Опрос, практическая работа
1.1	Введение в термопласты и FFF 3D печать	6	1	5	
1.2	Подготовка файлов и моделей для FFF 3D печати	6		6	
2	Блок 2. Введение в 3D печать SLA	8	2	6	Опрос, практическая работа
2.1	Введение в реактопласты и фотополимерные смолы	4	1	3	
2.2	Подготовка моделей и печать с помощью SLA 3D принтера	4		4	
3	Блок 3. 3D печать и керамика	10	1	9	Опрос, практическая работа
3.1	Ручные техники работы с керамикой: шликерное литьё, лепка.	4	1	3	

3.2	Использование печатных				
	форм и силикона для литья	3		3	
	фарфора				
3.3	3D печать керамическими	3	1	2	
	массами	3	1	2	
4	Блок 4.	6		6	Презентация
	Проектная деятельность			O	проекта
4.1	Работа над проектом	6		6	
					Итоговая
	Итоговая аттестация				аттестация
					проводится на
					основании
					результатов
					промежуточных
					практических
					работ
	Всего, ак. часов:	36	5	31	

2.2 Рабочая программа

Блок 1. Введение в 3D печать FFF

1.1 Введение в термопласты и FFF 3D печать.

Лекция. Мир термопластичных полимеров и FFF 3D печать.

Практическое занятие. Сравнение механических свойств PLA, PETG и TPU. Устройство FFF 3D принтера PRUSA MK3S.

2.2 Подготовка файлов и моделей для FFF 3D печати

Практическое занятие. Работа со слайсерами Orca и PRUSA. Доработка моделей с учетом особенностей FFF.

Самостоятельная работа. Подготовка 3D модели для печати на FFF 3D принтере.

Блок 2. Введение в 3D печать SLA

2.1 Введение в реактопласты и фотополимерные смолы

Лекция: Мир реактопластов и SLA 3D печать. Правила безопасной работы с фотополимерными смолами.

Практическое занятие: Устройство SLA 3D принтера Anycubic Photon Mono. Практика использования защитных перчаток, очков и респиратора. Подготовка принтера к печати.

2.2 Подготовка моделей и печать с помощью 3D принтера SLA

Практическое занятие: Работа со слайсером Chitubox.

Самостоятельная работа: подготовка 3D модели для печати на SLA 3D принтере.

Блок 3. 3D печать и керамика

3.1 Ручные техники работы с керамикой: шликерное литьё, лепка.

Лекция: Мир керамики: от лепки глину до 3D печати фарфором. Правила безопасной работы с порошками.

Практическое занятие: Лепка глины, шликерное литье в гипсовые формы.

3.2 Использование печатных форм и силикона для литья фарфора

Практическое занятие: Изготовление силиконовой формы. Литье силикона в печатную форму для последующего литья шликера.

3.3 3D печать керамическими массами

Лекция: 3D печать и новые возможности в производстве керамических изделий.

Практическое занятие: Устройство LDM 3D принтера. Подготовка 3D принтера к печати. Работа с фарфором.

Блок 4. Проектная деятельность

4.1 Проектирование и изготовление керамической посуды

Практическое занятие: Формирование проектных команд, выбор темы проекта и исследований. Определение цели проекта, задач, методов проведения исследования, метода изготовления изделия.

Самостоятельная работа: определить для своего проекта цель, задачи, методы исследования, возможные выводы. Работа над проектом. Создание слайдов презентации. Репетиция защиты проекта.

3 Формы аттестации и оценочные материалы

3.1 Формы контроля

Реализация программы «3D печать и техническое творчество» базового уровня предусматривает текущий контроль, промежуточную и итоговую аттестацию обучающихся.

Текущий контроль проводится проверка знаний в форме короткого опроса, позволяющего выявить усвоение материала обучающимися. Вопросы, которые возникают у обучающихся в процессе обучения, выносятся на общее обсуждение также в диалоговой форме разбора материала. Промежуточная аттестация проводится в форме защиты работы или проекта, участия в конференциях, выставках, фестивалях.

Итоговая аттестация проводится в форме защиты учебно-исследовательской или творческой работы и проекта (защита проекта).

Основным механизмом выявления результатов воспитания является педагогическое наблюление.

Публичная презентация образовательных результатов программы осуществляется в форме презентации проекта.

3.2 Средства контроля

Контроль освоения обучающимися программы осуществляется путем оценивания параметров, описанных в Таблице 2.

Таблица 2 - Критерии оценивания освоения программы обучающимися

Критерии	Уровни определения результатов					
оценки	Минимальный уровень	Общий уровень	Продвинутый уровень			
Усвоение учебного материала	Обучающийся может пройти короткий опрос каждого раздела программы.	Обучающийся может пройти короткий опрос каждого раздела программы и ответить на дополнительные вопросы.	Обучающийся может пройти короткий опрос каждого раздела программы, ответить на дополнительные вопросы, вносит предложения вопросов для обсуждения.			
Рабочие результаты	Обучающийся показывает знание материала, учебный проект не выполнен.	Выполнен учебный проект.	Выполнено два или больше проектов в рамках программы.			

3.3 Итоговая аттестация

Итоговая аттестация проводится на основании совокупности результатов проведенных опросов и выполненного проекта.

4 Методическое обеспечение программы

Методы обучения, используемые в программе: словесные (устное объяснение материала), наглядные (презентация), практические (дети решают инженерные задачи), аналитические.

С целью стимулирования творческой активности учащихся будут использованы:

- метод проектов;
- метод погружения;
- методы сбора и обработки данных;
- игровые методики;
- исследовательский и проблемный методы;
- анализ справочных и литературных источников;
- поисковый эксперимент; опытная работа;
- обобщение результатов.

Для обеспечения наглядности и доступности изучаемого материала используются:

- наглядные пособия смешанного типа (слайды, видеозаписи, кинематические схемы);
- дидактические пособия (карточки с заданиями, рабочие тетради с практическими заданиями, раздаточный материал);
 - информационные материалы и технологические карты (инструкции, памятки).

Программа может быть реализована с применением электронного обучения и дистанционных образовательных технологий с использованием систем дистанционного обучения.

5 Организационно-педагогические ресурсы

5.1 Специализированные лаборатории и классы, основные установки и стенды

Занятия проводятся в специализированных аудиториях со всем необходимым для реализации проектов оборудованием:

- компьютерный класс (К-112);
- лаборатория 3D печати (K-018, K-019).

5.2 Оборудование и программное обеспечение

Программа реализуется с использованием специализированного программного обеспечения для трехмерного проектирования:

- операционная система Windows 10;
- Компас 3D;
- Rhino 3D:
- Orca Slicer и PRUSA Slicer.

5.3 Аппаратное обеспечение

Программа реализуется на оборудовании ЦТПО (Центр технологической поддержки образования) «Лаборатории цифрового производства Фаблаб» (СКБ «РеИнж» НИТУ «МИСИС»):

- станок лазерной резки и гравировки GCC Laser Pro;
- станок лазерной резки и гравировки Trotec;
- 3D принтер SLA Anycubic Photon Mono;
- 3D принтер FFF Flashforge Adventurer M5;
- 3D принтер для печати керамическими массами;
- ручной инструмент и электроинструмент.

5.4 Материалы и инструменты

Материалы и инструменты, используемые в ходе проведения практических занятий и самостоятельной работы:

- филамент PLA для 3D печати FFF (20 катушек по 750 г);
- филамент PETG для 3D печати FFF (20 катушек по 750 г);
- филамент TPU для 3D печати FFF (10 катушек по 750 г);
- фотополимерная смола для 3D печати SLA (25 шт по 1 л);
- спирт изопропиловый (10 шт. по 5 л);
- фанера 3мм для лазерной резки (10 листов 1500х1500мм);
- фанера 6мм для лазерной резки (10 листов 1500х1500мм);
- оргстекло 3 мм для лазерной резки (10 листов 2000х1800мм);
- силикон для литья на основе платины (30 л);
- перчатки нитриловые (400 шт.);
- респираторы одноразовые (100 шт.);
- бумажные полотенца (рулон, 50 шт.);
- стержни для клеевого пистолета (200 шт.);
- очки защитные (25 шт.);
- набор инструментов для лепки (25 шт.);

- губка для глины (100 шт.);
- турнетка (5 шт.);
- силиконовая смазка (аэрозоль, 6 шт.);
- медная смазка (аэрозоль, 6 шт.);
- керамическая масса "париан" (60 кг);
- глина красная (100 кг);
- **скотч малярный** (30 шт.);
- глазурь для керамических изделий (50 упаковок);
- шликер фарфоровый (25 л).

5.5 Кадровое обеспечение программы

Программа реализуется квалифицированными научно-педагогическими кадрами системы высшего образования, имеющими образование в области, соответствующей профилю программы, и постоянно повышающим уровень профессионального мастерства. Для обеспечения образовательного процесса необходимо привлечение следующих специалистов:

- преподаватель;
- ассистент преподавателя;
- инструктор.

6 Список литературы

Основная литература

- 1. Ляпков, А. А. Полимерные аддитивные технологии: учебное пособие / А. А. Ляпков, А. А. Троян. Санкт-Петербург: Лань, 2024. 120 с.
- 2. Львов, В. А. Практикум по проектированию 3D-моделей изделий медицинского назначения: методические указания / В. А. Львов. Москва: Издательский дом НИТУ «МИСиС», 2020.
- 3. Аддитивные технологии: металлы, композиты и биоматериалы: материалы II-V всероссийских школ и конференций / под ред. А. А. Громова, Э. Л. Дзидзигури. Москва: Издательский дом НИТУ «МИСиС», 2024. 79 с.

Список интернет-ресурсов

1. Rutube-канал «Цифровая фабрика». - URL: https://rutube.ru/u/digitalfab/ (дата обращения 05.02.2025).