Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский технологический университет «МИСИС»

Хтет Зо У

ДЕЙСТВИЕ КОМПОЗИЦИЙ МЕТАЛЛОСОДЕРЖАЩИХ МОДИФИКАТОРОВ С СУЛЬФИДОМ НАТРИЯ НА ПОВЕРХНОСТИ СУЛЬФИДНЫХ МИНЕРАЛОВ МЕДИ И ЦИНКА ПРИ ФЛОТАЦИИ МЕДНО-ЦИНКОВЫХ РУД

Специальность 2.8.9 – Обогащение полезных ископаемых

Автореферат диссертации на соискание ученой степени кандидата технических наук

> Научный руководитель Доктор технических наук, профессор Горячев Борис Евгеньевич

ВВЕДЕНИЕ

Актуальность исследования

Колчеданные медно-цинковые руды, широко распространенные на Урале, характеризуются повышенной сложностью обогащения. Данная особенность обусловлена двумя ключевыми факторами: во-первых, крайне высоким процентным содержанием пирита (до 85–90 %), а во-вторых, тонкодисперсным и неоднородным взаимным срастанием сульфидных минералов между собой и с породой.

Наиболее эффективным технологическим процессом разделения минералов из тонковкрапленных руд цветных металлов, таких как медно-цинковые колчеданные руды, является флотация. Для переработки больших объемов труднообогатимого сырья необходимы разработка и внедрение новых методов и технологий. Внедрение селективно действующих реагентов-модификаторов флотации сульфидных минералов, составляющих минеральный комплекс колчеданных медно-цинковых руд, могут повысить контрастность поверхностных свойств минералов с близкими технологическими характеристиками.

В данный момент на обогатительных фабриках наиболее распространена коллективно-селективная схема флотации, при которой из коллективного медноцинкового концентрата выделяются минералы меди и цинка, с подавлением флотации пирита. Эта технология обеспечивает высококачественное извлечение металлов из тонковкрапленных труднообогатимых руд с последующим получением концентратов меди и цинка.

Селективная флотация сульфидных руд цветных металлов, в частности медноцинковых колчеданных руд, представляет собой сложную технологическую проблему. Совершенствование реагентных режимов в цикле коллективной медно-цинковой флотации колчеданных медно-цинковых руд позволит минимизировать потери меди и цинка с отвальными хвостами. Эта проблема может быть решена посредством совершенствования существующих технологий за счет расширения номенклатуры используемых флотационных реагентов.

Таким образом, совершенствование реагентных режимов флотации медноцинковых колчеданных руд с использованием композиций металлосодержащих реагентов-модификаторов с сернистым натрием является актуальной задачей.

Идея работы заключалась в применении в коллективном цикле флотации колчеданных медно-цинковых руд композиций реагентов разнонаправленного действия на флотируемость минералов меди, цинка и пирита, что позволило стабилизировать ионный состав жидкой фазы в операциях коллективного цикла флотации и создало условия селективного отделения минералов меди и цинка от пирита. Примером таких композиций может быть смесь медного купороса с цинковым купоросом и сернистым натрием.

Цель работы — повышение эффективности флотации за счет действия композиций металлосодержащих модификаторов с сернистым натрием на поверхность зерен сульфидных минералов меди, цинка и пирита при флотации медно-цинковых колчеданных руд.

Для достижения поставленной цели решались следующие задачи:

1. разработка методики определения рH, окислительно-восстановительного потенциала и удельной проводимости жидкой фазы и суспензий растворов железного, цинкового и медного купоросов и сернистого натрия при их введении в реактор с водой и с суспензией гидроксида кальция;

- 2. исследование поверхности сфалерита и пирита после обработки металлосодержащими модификаторами в сочетании с сернистым натрием методом рентгенофлуоресцентой спектроскопии на предмет наличия катионов железа, цинка и серы;
- 3. исследование взаимодействия поверхности минералов сфалерита и пирита с продуктами гидролиза и диссоциации металлосодержащих реагентов-модификаторов методом электроосмоса;
- 4. изучение изменения гидрофобности поверхности сфалерита и пирита под действием металлосодержащих модификаторов с сернистым натрием методами лежащей и висящей капли в воде и в растворе бутилового ксантогената калия;
- 5. изучение влияния композиций металлосодержащих модификаторов с сернистым натрием на флотацию медно-цинковой руды; оптимизация и моделирование зависимостей извлечения меди, цинка и железа в пенный продукт медно-цинковой флотации с использованием симплекс-метода планирования эксперимента;
- 6. разработка реагентного режима флотации медно-цинковой руды с использованием композиции металлосодержащих модификаторов с сернистым натрием на основе установленных закономерностей.

Методы исследований: В данном исследовании применены следующие методы: осадительное титрование для анализа состава и состояния продуктов гидролиза сульфатов железа, цинка, меди и сернистого натрия; рентгенофлуоресцентный анализ и измерение дзета-потенциала для изучения взаимодействия продуктов гидролиза реагентов с поверхностью сфалерита и пирита; определение поверхностного натяжения, как характеристики межфазных свойств жидкостей и растворов; измерение краевого угла смачивания и расчет работы адгезии для оценки смачиваемости поверхности минералов в воде и растворе бутилового ксантогената калия; симплексное планирование эксперимента типа «состав — свойство» при проведении флотационных опытов; флотационные испытания разработанных реагентных режимов; анализ кинетических кривых флотации с расчетами спектров флотируемости меди, цинка и пирита.

Научная новизна:

- 1. Установлено, что обработка сфалерита раствором, содержащим смесь железного купороса и сернистого натрия в соотношении 50 % : 50 %, приводит к уменьшению отрицательного значения дзета-потенциала минерала, что свидетельствует о формировании положительного заряда на поверхности зерен сфалерита, и, в свою очередь, способствует электростатической адсорбции анионных сульфгидрильных собирателей и улучшает флотируемость сфалерита;
- 2. Установлен ряд адгезии аполярной органической жидкости (тяжелый газойль каталитического крекинга) к поверхности сфалерита, предварительно обработанного растворами реагентов модификаторов на основании рассчитанных величин работы адгезии на границе раздела фаз «минеральная поверхность вода, органическая жидкость и раствор бутилового ксантогената калия;
- 3. С использованием симплекс-плана Шеффе 4-го разработаны статистические модели, устанавливающие зависимость показателей флотации меди, цинка и железа в коллективный концентрат от состава использованных в работе тройных смесей реагентовмодификаторов на основании результатов медно-цинковой флотации;
- 4. С использованием метода рентгенофлуоресцентной спектроскопии установлена адсорбция серы при взаимодействии поверхности сфалерита с водными растворами

сернистого натрия, особенно с раствором смеси железного купороса, цинкового купороса и сернистого натрия в соотношении 50 % : 25 % : 25 %.

Практическая значимость работы:

- 1. Разработан реагентный режим для коллективно-селективной флотации медноцинковой колчеданной руды одного из Уральских месторождений на основе использования композиций металлосодержащих реагентов-модификаторов с сернистым натрием в коллективном цикле флотации. Зафиксировано повышение эффективности извлечения меди и цинка и снижение флотоактивности пирита, что открывает возможности для внедрения данных решений в промышленную практику обогатительных фабрик.
- 2. Экспериментально установлено, что смесь железного купороса и сернистого натрия в соотношении 50 %: 50 % приводит к повышению извлечения меди в меднопиритный концентрат до 86,74 %, а цинка в цинковый концентрат до 73,86 %.
- 3. Показано, что при применении смеси железного купороса с сернистым натрием при их расходах в смеси 50 г/т каждого реагента наблюдается наилучшая кинетика флотации меди в операции медно-пиритной флотации. Применение реагентовмодификаторов с сернистым натрием не ухудшает кинетику флотации медно-цинковых колчеданных руд.

Научные положения, выносимые на защиту:

- 1. Установленное наличие продуктов гидролиза и диссоциации железного, цинкового купоросов и сернистого натрия на поверхности зерен сфалерита и пирита методом рентгенофлуоресцентной спектроскопии;
- 2. Закономерности взаимодействия поверхности сфалерита и пирита с ионами железа, цинка и серы, возникающими в растворах железного, цинкового купоросов, сернистого натрия и их смесей методом измерения дзета-потенциала;
- 3. Установленная стабилизация ионного состава жидкой фазы в результате дозирования реагентов модификаторов, приводящая к формированию гидрофобной поверхности сфалерита и частичной гидрофильности пирита методом измерения краевого угла смачивания в водной и ксантогенат содержащих средах;
- 4. Закономерности влияния композиций металлосодержащих модификаторов с сернистым натрием на флотацию медно-цинковой руды в коллективном цикле флотации и в цикле селекции коллективного медно-цинкового концентрата.

Апробация работы: Основные положения И результаты исследований представлены и обсуждены на следующих научных конференциях и симпозиумах: 81-я Международная научно-техническая конференция (2023 г., Магнитогорск); XXXI и XXXII Международные научные симпозиумы «Неделя Горняка» (2023, 2024 г., Москва); Международные конференции «Плаксинские чтения» (2023 г., Москва; 2024 г., Апатиты; 2025 г., Екатеринбург); XIX Международный форум-конкурс студентов и молодых ученых «Актуальные проблемы недропользования» (2023 г., Санкт-Петербург); XVIII Всероссийская молодежная научно-практическая конференция «Проблемы недропользования» (2024 г., Екатеринбург); Международная научно-практическая конференция «Леоновские чтения» (2024 г., Иркутск).

Публикации: По материалам диссертации опубликовано 13 работ, их которых 3 статьи в рецензируемых журналах ВАК, 3 статьи в журналах, индексируемых в базах данных Scopus и РИНЦ, 1 свидетельство о регистрации НОУ-ХАУ и 6 тезисов докладов в сборниках материалов научных конференций и форумов.

Достоверность результатов: Достоверность результатов исследования диссертации была подтверждена современными физико-химическими методами, включая рентгенофлуоресцентный анализ (РФА), измерение краевого угла смачивания, анализ дзета-потенциала, осаждение и соосаждение гидроксидов и сульфидов цинка и железа; экспериментальные данные, проанализированны с помощью математической статистики, и расчетом моделей типа «состав – свойство».

Структура и объем диссертации: Диссертация состоит из введения, 5 глав, заключения, списка использованных источников из 143 наименований. Общий объем работы составляет 150 страниц, включает 85 рисунков, 17 таблиц и 3 приложения.

Личное участие автора состоит в анализе современного состояния вопроса флотации медно-цинковых руд; планировании и проведении лабораторных экспериментов по изучению влияния композиций металлосодержащих модификаторов с сернистым натрием на поверхность сульфидов, их дзета-потенциал, степень гидрофобизации и состав жидкой фазы при различных значениях рН; обработке и анализе экспериментальных данных; обобщении результатов исследований и формулировании научных выводов; подготовке научных статей, докладов и написании диссертации.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Во введении изложены основные характеристики исследования, обоснована его актуальность, а также определены цель и задачи работы.

В первой главе рассмотрено современное состояние технологии флотационного обогащения медно-цинковых колчеданных руд с учетом минерально-сырьевой базы, минерального состава и технологических свойств руд, используемых реагентов, а также применяемых схем и режимов флотации медно-цинковых колчеданных руд.

Медно-цинковые месторождения, как и другие сульфидные месторождения, выступают важнейшими источниками для промышленного получения тяжелых цветных металлов. Медь и цинк относятся к числу основных цветных металлов, являясь стратегическим сырьем, потребление которого служит индикатором промышленного и технического потенциала страны и играет ключевую роль в обеспечении потребностей российской металлургической отрасли.

В условиях мирового уменьшения объемов добычи и увеличения производства и потребления цинка важным направлением является разработка инновационных технологических схем и режимов флотации, а также внедрение новых технических решений для повышения качественных и количественных характеристик обогащения цинксодержащих руд.

Флотационное обогащение медно-цинковых колчеданных руд в России представляет значительные трудности из-за их многокомпонентного состава и мелкодисперсного распределения сульфидных минералов. Процесс обогащения данных руд также существенно осложняется высоким содержанием пирита (85–90%).

Флотация является основным методом, используемым для переработки колчеданных медно-цинковых руд. Существует два основных способа флотации медно-цинковых руд: коллективно-селективная и прямая селективная схемы флотации. Выбор способа обогащения определяется не только степенью вкрапленности минералов и их крупностью, но главным образом — состоянием поверхности минералов руды. Если руда подверглась частичному окислению или содержит вторичные сульфиды меди, предпочтение отдаётся коллективно-селективной флотационной схеме.

Прямая селективная флотация находит применение при переработке колчеданных руд массивного и вкрапленного типа, в которых отмечается низкое содержание вторичных сульфидов меди, а природная активация сфалерита выражена незначительно. В прямой селективной схеме флотации большинство тонковкрапленных зерен пирита, халькопирита и сфалерита раскрываются за счет измельчения руды до 60–70% класса -0,074 мм. По этой схеме можно получать медный, цинковый и пиритный концентраты без чрезмерного измельчения руды.

Применение схемы прямой селективной флотации позволяет эффективно разделять сульфиды меди и цинка, что является более простым решением по сравнению с необходимостью последующей активации сульфидов цинка, требуемой при коллективной флотации. Данный подход обеспечивает достижение оптимальных технологических показателей обогащения. В качестве примера внедрения этой технологии можно привести практику Сибайской и Александровской обогатительных фабрик в России.

Если в медно-цинковых рудах содержится много вторичных минералов меди, для их обогащения используется схема коллективно-селективной флотации. При этом руды подвергают измельчению до крупности 90% класса –0,074 мм с последующей коллективной флотацией минералов меди цинка, а затем из селекции. В качестве собирателя и пенообразователя применяют бутиловый ксантогенат калия и оксаль, например, Т-92. Полученный коллективный концентрат подвергают сгущению и дополнительному измельчению до крупности 95% класса –0,044 мм. Затем минералы меди и сфалерит разделяют (рН 9–9,5), используя сернистый натрий и цинковый купорос для депрессии сфалерита. Данная технология задействована на Учалинской и Гайской фабриках, где обрабатывают медно-цинковые руды различных типов – сплошные и вкрапленные.

Таким образом, поиск и разработка высокоселективных реагентов и реагентных режимов является одним из основных способов повышения технологических показателей обогащения медно-цинковых руд, в том числе изыскание селективных по отношению к пириту реагентов при флотационном разделении минералов меди и цинка от пирита. Примером таких реагентов является сочетание купоросов железа, цинка и меди с сернистым натрием, дозируемых в медно-цинковом цикле флотации колчеданных медно-цинковых руд.

Во второй главе приведены объекты и методы исследований.

Методика изучения сорбции железа, цинка и серы на поверхностии сфалерита и пирита методом рентгенофлуоресцентной спектроскопии. Образцы исследуемых минералов измельчались до тонкодисперсного состояния с размером частиц менее 40 мкм. Для обработки минеральных зёрен реагентами навеску исследуемого минерала (пирит, сфалерит) массой 1 г помещали в стакан и добавляли 50 мл раствора реагента с концентрацией 0,1%. Полученную суспензию перемешивали на магнитной мешалке в течение 5 минут, после чего проводили потенциометрические измерения состояния жидкой фазы. Твёрдую фазу отделяли от жидкой фильтрованием на бумажных фильтрах, промывали дистиллированной водой, удаляли влагу помалкиванием бумажным фильтром и высушивали в эксикаторе. Для получения рентгенограммы минеральных порошков пирита и сфалерита, обработанных реагентами-модификаторами, образец в виде пробы порошка минерала подвергался рентгенофлуоресцентному анализу на приборе ElvaX при разных токах рентгеновской трубки и времени облучения. Таким образом, получают

спектр интенсивностей К-линий железа, цинка и серы, отражающей действие исследуемых реагентов-модификаторов на поверхность зерен сфалерита и пирита.

Методика осаждения катионов железа (II), цинка и меди гидроксид- и сульфид-ионами. С помощью рН-метрии, ОВП-метрии и кондуктометрии изучали состояние водных растворов и суспензий реагентов-модификаторов. Процесс осаждения осуществляется следующим образом. В реактор добавляли 500 мл водопроводной воды, затем через бюретку в воду дозировали исходный раствор либо одного из купоросов железа, цинка или меди, либо сернистого натрия. Исходный раствор готовился с концентрацией каждого реагента с концентрацией 10мГ/мл, исходя из его расхода во флотации 100 г/т. Раствор вводят в реактор из бюретки порциями по 1 мл, причем всего дозируется 10 порций. После введения каждой порции раствора в реактор жидкую фазу перемешивают на магнитной мешалке в течение 5 минут, после чего с помощью рН-метра «ЭКСПЕРТ-001» и кондуктометра «Анион-4100» проводят замеры показателей рН, потенциала ОВП и проводимости жидкой среды. После каждой введенной порции реагента делалась фотография реактора.

Методика измерения дзета-потенциала сфалерита и пирита. Для определения электрокинетического потенциала порошков пирита и сфалерита использовался метод электроосмоса. На первом этапе навески порошков сфалерита и пирита помещали в стакан и перемешивали с раствором реагента в течение 5 минут. После перемешивания измеряли значение рН полученной суспензии. Далее обработанные реагентами образцы сфалерита и пирита помещали в ячейку, которую и ее окружающий стакан заполняли водой. Электрический ток подавали через систему, состоящую из двух дополнительных стаканов, содержащих 10 %-ый раствор CuSO4. При пропускании тока фиксировали скорость движения воды в капиллярной трубке, подключенной к ячейке. Для расчета дзета-потенциала использовали основную формулу:

$$\zeta = 2.4 * 10^6 * \frac{V * \varkappa}{i}, \text{ MB}$$
 (1)

Рабочие растворы готовили с использованием следующих реагентов: (1) H_2O (контроль); (2) $FeSO_4 \cdot 7H_2O$ (100 %); (3) $ZnSO_4 \cdot 7H_2O$ (100 %); (4) $Na_2S \cdot 9H_2O$ (100 %); (5) смесь $FeSO_4 \cdot 7H_2O$ и $ZnSO_4 \cdot 7H_2O$ (50 % : 50 %); (6) смесь $FeSO_4 \cdot 7H_2O$ и $Na_2S \cdot 9H_2O$ (50 % : 50 %); (7) смесь $FeSO_4 \cdot 7H_2O$, $ZnSO_4 \cdot 7H_2O$ и $Na_2S \cdot 9H_2O$ (50 % : 25 % : 25 %).

Определение поверхностного натяжения жидкостей. Исследование поверхностного натяжения жидкости методом висящей капли проведено использованием оптического тензиометра CAM 101 (KSV Instruments Ltd., Финляндия). Для начала работы включили прибор KSV CAM 101 и запустили программное обеспечение KSV CAM в персональном компьютере. При измерении поверхностного натяжения висящей капли использовалась специализированная игла с заданным диаметром. Шприц предварительно заполняли исследуемой жидкостью (органическая жидкость ТГКК, дистиллированная вода, раствор бутилового ксантогената калия) и устанавливали в дозирующую систему. С помощью регулирующих винтов дозирующей системы выполнялось позиционирование иглы, добившись ее точного расположения в центре изображения. Капли жидкости формировались посредством контролируемой подачи жидкости через иглу шприца, затем, изображение капли фиксировалось цифровой видеокамерой и обрабатывалось компьютером, программа которого определяет радиус

кривизны и аппроксимацию формы капли. После этого программа вычисляла поверхностное натяжение на основе геометрии капли.

При измерении поверхностного натяжения на границе раздела «жидкость — жидкость», аполярную органическую жидкость помещали в стеклянную кювету. Кювету устанавливали на подвижный столик, оснащенный винтом для перемещения его в вертикальном направлении. Затем внутрь органической фазы вводили капли полярной жидкости (вода, раствор бутилового ксантогената калия) с помощью микрошприца. Полученные изображения фиксировались и обрабатывались с использованием программного обеспечения для расчета межфазного натяжения.

Методика исследования гидрофобизации поверхности сфалерита и пирита. При проведении данных исследований, в качестве твердой фазы применяли образцы в виде таблеток, полученные прессованием порошков сфалерита и пирита (фракция –0,044 + 0 мм, масса - 2 г). До прессования таблеток исходный порошок зерен каждого минерала предварительно обрабатывался растворами следующих реагентов: сульфата железа(II), сульфата цинка, сернистого натрия и их композиций. Прессованную таблетку минерала помещали в стеклянную кювету, в которую добавляли дистиллированную воду или раствор бутилового ксантогената калия. После 10-минутной выдержки таблетки в растворе на ее поверхность наносили каплю органической жидкости ТГКК, после чего делали фотографию капли цифровой видеокамерой, соединенной с компьютером. Затем проводился имидж-анализ капли, сидящей на поверхности таблетки с фиксацией краевого угла смачивания. Таким образом, были измерены краевые углы смачивания капли ТГКК на поверхности таблеток минерала вдоль всего трехфазного периметра.

Методика проведения коллективной флотации медно-цинковой руды. Исследования флотации проводились с использованием лабораторной флотомашины механического типа ФЛ-137. Руда предварительно дробилась до -3 мм, после чего отбирались навески массой 250 г, которые измельчались до 80 % класса -74 мкм. Полученный материал направляли на флотацию. Флотация I (флотация наиболее легко флотируемых фракций минералов руды) известная как «медная головка», проводилась в голодном режиме по собирателю [10 г/т БКК]. Флотацию II (медно-цинковая флотация) проводили с использованием реагентов-модификаторов в известковой среде (2000 г/т СаО). При проведении флотации II снималась ее кинетика. Схема проведения коллективной флотации медно-цинковой руды представлена на рисунке 1.

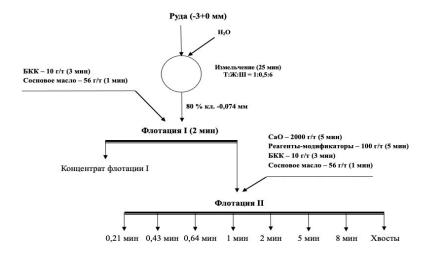


Рисунок 1 – Схема коллективной флотации медно-цинковой руды

В качестве модификаторов флотационного процесса использовали композиции исследуемых реагентов: купоросы железа, меди, цинка с сульфидом натрия, которые вводили в пульпу с общим расходом 100 г/т. В соответствии с симплексным планом четвертого порядка (рис. 2), в процесс флотации II был сформирован состав смесей указанных реагентов.

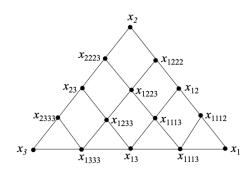


Рисунок 2 – Решётчатый план Шеффе {3,4}

В ходе флотации II для установления зависимости между функцией отклика (например, извлечение) и тремя независимыми переменными (x_1 – первый компонент, x_2 – второй компонент, x_3 – третий компонент) был применен план Шеффе 4-го порядка.

Методика селективной флотации коллективного концентрата. Лабораторные исследования коллективного цикла флотации руды велись на флотационной машине МЕХАНОБР с объемом камеры 3 л, а селективного цикла — на флотационной машине ФЛ 137 с объёмом камеры 0,5 л. Селективной медно-пиритной флотации подвергался объединенный концентрат флотаций I и II. Общая схема флотации представлена на рисунке 3.

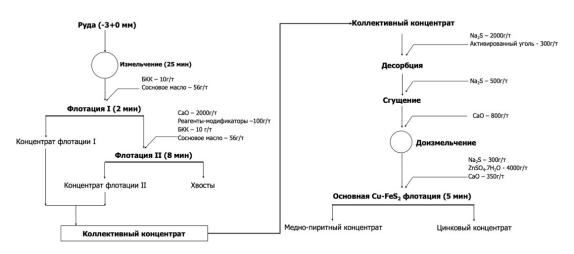


Рисунок 3 – Схема проведения селективной флотации коллективного концентрата

Схема предусматривает проведение двух этапов коллективной флотации медноцинковой руды: І (медная головка) и ІІ (медно-цинковая флотация). При проведении флотации І использовались только собиратель и пенообразователь, а время процесса составляло 2 минуты. Флотация ІІ перерабатывала хвосты флотации І с добавлением извести, смеси модификаторов (общий расход - 100 г/т), бутилового ксантогената калия и соснового масла, продолжительностью 8 минут. Концентраты флотаций І и ІІ объединялись в коллективный концентрат для дальнейшего процесса его селекции. Процесс селективной флотации медно-цинкового концентрата включает: десорбцию ($Na_2S - 2000 \text{ г/т}$, активированный уголь -300 г/т), сгущение до 60 % твердого с добавлением Na_2S (500 г/т), доизмельчение до 95 % класса -44 мкм с известью (800 г/т) и основную медно-пиритную флотацию с депрессией сфалерита ($Na_2S - 300 \text{ г/т}$, $ZnSO_4 - 4000 \text{ г/т}$). Последняя операция флотации проводилась в щелочной среде, обеспеченной добавлением извести 350 г/т, что поддерживало значение pH в диапазоне 8,5-9,0.

В третьей главе изложены результаты исследования реакций металлосодержащих реагентов-модификаторов с сернистым натрием и их взаимодействия с поверхностью сульфидных минералов сфалерита и пирита.

Изучение состояния жидкой фазы при добавлении смесей купоросов и сернистого натрия в реактор с суспензией гидроксида кальция. На рисунке 4 приведены значения рН и ОВП жидкой фазы суспензий, полученных при добавлении в суспензию гидроксида кальция смеси купоросов и сернистого натрия.

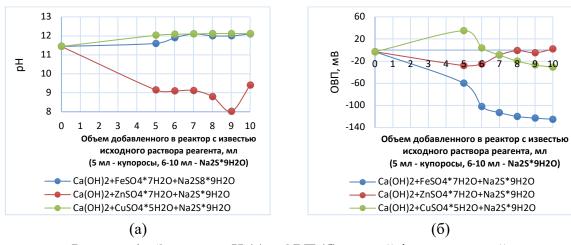


Рисунок 4 – Значение pH (a) и ОВП (б) жидкой фазы суспензий

Анализ данных рис. 4(а) показал, что в системе с гидроксид кальция- сульфат железа (II) Ca(OH)₂ – FeSO₄ pH повышается с 11,44 и стабилизируется на уровне 12,1, что отражает буферное действие смеси осадков гидроксида кальция и гидроксида железа(III). Аналогичная картина наблюдается и при дозировании медного купороса в суспензию гидроксида кальция. Напротив, при дозировании цинкового купороса в суспензию гидроксида кальция наблюдается значительное снижение pH жидкой фазы суспензии с 11,44 до 9,15 с последующим падением до 8,02. Это свидетельствует о высокой чувствительности pH жидкой фазы к составу осадков гидроксидов кальция и цинка и стабилизации его значения на уровне pH = 9.

Согласно рис. 4(б), наиболее глубокое смещение окислительно-восстановительного потенциала жидкой фазы суспензий наблюдается при введении в суспензию гидроксида кальция раствора железного купороса. ОВП суспензии уменьшается с -3 мВ, относительно хлорсеребряного электрода сравнения до -125 мВ. При этом не наблюдается сильного изменения ОВП в смесях суспензий гидроксида кальция и гидроксидов или цинкового, или медного купоросов. Это обосновывает идею работы о применении композиций реагентов-модификаторов флотации сульфидных минералов разнонаправленного действия.

Исследование сорбции соединений железа, *цинка и серы на поверхности сфалерита и пирита*. На рисунке 5 показаны результаты рентгено-флуоресцентного

спектрального анализа порошковых проб сфалерита, зерна которого обработаны растворами реагентов-модификаторов разного состава. На рисунке 5(а) представлен спектр порошка сфалерита, на котором проявились К-линии цинка, железа и серы разной интенсивности при обработке сфалерита реагентами, составляющими смесь 50 % железного, 25 % цинкового купоросов и 25 % сернистого натрия.

На рисунке 5(б) показана зависимость интегральной интенсивности К-линии серы от состава растворов, при обработке порошковых проб сфалерита растворами реагентовмодификаторов разного состава.

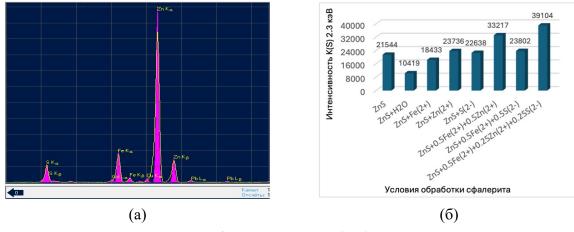


Рисунок $5 - P\Phi$ спектр порошка сфалерита после обработки его зерен раствором тройной смеси 50% FeSO₄, 25% ZnSO₄, 25% Na₂S (a) и смесями различного состава реагентов (б)

Установлено, что интенсивность К-линий серы исходного образца составляет 21544 импульсов, тогда как после обработки водой она существенно снижается до 10419 импульсов, что свидетельствует о влиянии гидратации поверхности зерен сфалерита при его контакте с водой. Наибольший рост интенсивности фиксируется при совместном применении реагентов по сравнению с действием отдельных компонентов. Так, при обработке тройной смесей 0,5FeSO₄+0,25ZnSO₄+0,25Na₂S она достигает максимального значения 39104 импульса, что, может быть связано с синергетическим эффектом и усилением проявления серосодержащих соединений на поверхности минерала.

Электроосмотическое определение дзета-потенциала сфалерита и пирита. При электроосмотическом исследовании дзета-потенциала сфалерита и пирита обработку поверхности сфалерита и пирита проводили в растворах: (1) H_2O ; (2) $FeSO_4$; (3) $ZnSO_4$; (4) Na_2S ; (5) $FeSO_4+ZnSO_4$ (50% : 50%); (6) $FeSO_4+Na_2S$ (50% : 50%); (7) $FeSO_4+ZnSO_4+Na_2S$ (50% : 25% : 25%). Результаты измерения дзета-потенциала на рисунке 6.

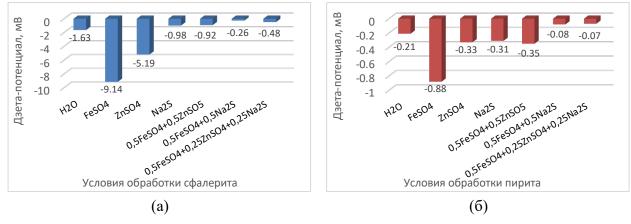


Рисунок 6 — Результаты измерений дзета-потенциала минеральных частиц сфалерита (a) и пирита (б) при обработке растворами реагентов-модификаторов

Из рисунка 6 следует, что ζ -потенциалы сфалерита и пирита в растворах реагентов и их смесях показали отрицательное значение дзета-потенциала. Это свидетельствует о том, что сама поверхность зерен минералов заряжена положительно.

Изучение влияния обработки сфалерита растворами различных составов на его дзета-потенциал выявило существенные различия в зарядовых характеристиках поверхности минерала (рис. 6,а). При обработке водой дзета-потенциал составляет -1,63 мВ. Наиболее отрицательный дзета-потенциал сфалерита, равный -9,14 мВ, наблюдается при обработке его зерен раствором железного купороса. Комбинация реагентов в обрабатывающем растворе дает другой эффект: раствор со смесью железного купороса и сернистого натрия при их соотношении 50% : 50% характеризуется минимальным значением дзета-потенциала (-0,26 мВ), в то время как в растворе с тройной смесью железного, цинкового купоросов и сернистого натрия при их соотношении 50% : 25% ; 25% дзета-потенциал равен -0,48 мВ.

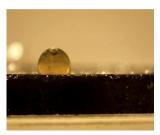
Анализ данных рис. 6(б) показал, что обработка пирита различными растворами вызывает менее значительные изменения его дзета-потенциала. Так, образец пирита, обработанный водой, продемонстрировал значение дзета-потенциала, равное -0,21 мВ. После обработки зерен пирита раствором железного купороса наблюдается снижение дзета-потенциала до -0,88 мВ. При составе смеси в растворе, содержащей цинковый купорос и сернистый натрий величина дзета-потенциала составляет -0,33 мВ и -0,31 мВ соответственно. Комбинированное действие железного и цинкового купоросов при их соотношении 50%:50% привело к значению дзета-потенциала, равному -0,35 мВ, тогда как смесь железного купороса и сернистого натрия при том же соотношении 50%:50% заметно уменьшила дзета-потенциал до -0,08 мВ. Обработка зерен пирита раствором с тройной смесью железного, цинкового купоросов и сернистого натрия. Тройная смесь FeSO₄, ZnSO₄ и Na₂S в соотношении 50%: 25%: 25% обеспечила минимальное значение дзета-потенциала, равное -0,07 мВ.

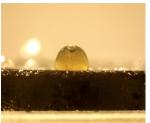
Результаты измерения дзета-потенциала на сфалерите и пирите показывают, что и тот и другой минерал характеризуется отрицательным значением дзета-потенциала, независимо от состава растворов, содержащих реагенты-модификаторы и их смеси. Однако более чувствительным к действию таких реагентов является сфалерит. Наиболее отрицательный дзета-потенциал сфалерита, равный -9,14 мВ, наблюдается при обработке его зерен раствором железного купороса, а применение смеси реагентов-модификаторов делает заряд поверхности сфалерита близким к нулю. Меньшее влияние такие реагенты оказывают на дзета-потенциал пирита. В целом, обработка поверхности зерен сфалерита и пирита реагентами- модификаторами их флотации способствует повышению флотационной активности прежде всего сфалерита и в меньшей степени пирита.

Исследование поверхностного натижения границы раздела жидкость – жидкость. В работе, для исследования влияния обработки поверхности зерен сфалерита и пирита на их гидрофобность были использованы растворы бутилового ксантогената калия и аполярная органическая жидкость — тяжелый газойль каталитического крекинга ТГКК, поверхностные натяжения на границе раздела которых в литературе на приведены. Результаты измерений поверхностного натяжения указанных жидкостей на границах раздела «жидкость — газ» и «жидкость — жидкость» приведены в таблице 1.

Tr C 1	n			U
Таолина 1 -	- Значения по	верхностного	натяжения	жилкостеи

Название жидкостей	Поверхностное натяжение, мН/м					
пазвание жидкостеи	№ 1	№2	№3	№4	№5	Ср. знач.
Капля ТГКК на воздухе	27,87	24,69	28,04	26,5	28,41	27,10± 1,20
Капля воды на воздухе	72,07	69,66	70,61	71,1	71,08	$70,90\pm0,69$
Капля р-ра БКК на воздухе	76,95	77,27	78,18	77,84	77,98	$77,64 \pm 0,45$
Капля воды в ТГКК	6,53	6,74	6,47	6,79	6,41	$6,59\pm0,15$
Капля р-ра БКК в ТГКК	38,33	30,52	35,16	34,2	32,62	$34,17\pm 2,56$


Из таблицы следует, что при измерении поверхностного натяжения капель различных жидкостей на границе с воздухом и органической жидкостью установлены существенные различия в межфазных взаимодействиях. Наибольшее значение поверхностного натяжения на границе с воздухом зафиксировано для капель раствора бутилового ксантогената калия (БКК), среднее значение составило 77,64 мН/м, что лишь незначительно превышает аналогичный показатель для капель воды — 70,90 мН/м. Существенно меньшим оказалось поверхностное натяжение органической жидкости ТГКК на воздухе — 27,10 мН/м.


При переходе от нахождения капли ТГКК на воздухе к нахождению капли воды или раствора БКК в органической жидкости ТГКК наблюдается резкое снижение поверхностного натяжения на границе раздела ТГКК - вода до 6,59 мН/м, В случае помещения капли раствора БКК в органическую жидкость поверхностное натяжения на такой границе раздела возрастает до 34, 17 мН/м. Полученные результаты позволили рассчитать работу адгезии поверхности сфалерита по результатам измерения краевого угла смачивания органической жидкостью ТГКК в воде и в растворе БКК с использованием уравнения Дюпре-Юнга.

Исследование гидрофобизации поверхности сфалерита и пирита. Результаты измерений краевых углов смачивания поверхности таблеток, спрессованных из зерен сфалерита крупностью -40 мкм, предварительно обработанных растворами реагентовмодификаторов разного состава и помещенных либо в воду, либо в раствор БКК, при нанесении на поверхность таблетки капли органической жидкости ТГКК, показали различное влияние предварительной обработки поверхности зерен минерала на гидрофобность поверхности таблеток (рисунки 7 и 8). Фотографии форм капли фиксировались путем раскадровки видеозаписей на 15 и 60-й секундах (рис. 7).

(a) $H_2O - 15 c$.

(a) $H_2O - 60 c$.

(б) *P-р БКК* – 15 с.

(б) P-p EKK - 60 c.

Рисунок 7 — Изображения капли ТГКК на поверхности таблеток сфалерита в дистиллированной воде (a) и в ксантогенатом растворе (б)

На рисунке 8 представлены результаты сравнительного анализа значений краевого угла смачивания и работы адгезии поверхности таблеток из сфалерита в воде и в растворе

ксантогената при предварительной обработке зерен минерала растворами реагентовмодификаторов.

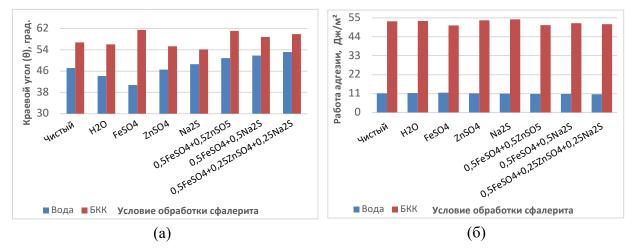


Рисунок 8 — Значение краевого угла смачивания (a) и работы адгезии (б) поверхности таблеток из сфалерита в дистиллированной воде и в ксантогенатом растворе при предварительной обработке зерен минерала растворами реагентов-модификаторов

Из рисунка 8(а) следует, что краевой угол смачивания поверхности сфалерита органической жидкостью ТГКК в растворе бутилового ксантогената калия выше, чем в дистиллированной воде. Наибольшее значение краевого угла смачивания в дистиллированной воде (53,13°) наблюдается на поверхности сфалерита, обработанного раствором смеси с составом 50%FeSO₄+25%ZnSO₄+25%Na₂S. В то же время наименьший краевой угол (40,82°) зафиксирован для таблетки сфалерита, обработанной раствором железного купороса. Наибольшие краевые углы смачивания сфалерита в растворе БКК зафиксированы после обработки зерен сфалерита растворами железного купороса (61,410) и смесью железного и цинкового купоросов при их соотношении 50%:50% (61,08°). Близкое значение (59,92°) получено для состава 50%FeSO₄+25%ZnSO₄+25%Na₂S.

По данным таблицы 1 и рисунка 8(a) была рассчитана работа адгезии органической жидкости ТГКК к поверхности таблеток сфалерита в воде и в растворе БКК по уравнению Дюпре-Юнга:

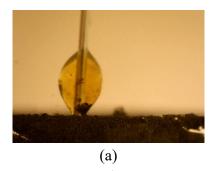
$$W_a = \sigma_{\text{w1-w2}} * (1 + \cos\theta), \tag{2}$$

где: W_a – удельная работа адгезии аполярной жидкости к поверхности твердого, $Дж/м^2$,

 $\sigma_{\text{ж1-ж2}}$ — удельная свободная поверхностная энергия границы раздела полярная жидкость — аполярная жидкость (вода или раствор БКК— ГТКК) Дж/м² численно равная поверхностному натяжению мН/м,

 θ — краевой угол смачивания поверхности твердого аполярной жидкостью в полярной жидкости, градусы.

Ниже приведены значения работы адгезии, рассчитанные для случая обработки поверхности зерен сфалерита раствором железного купороса, после контакта поверхности таблетки в дистиллированной водой и раствором БКК


$$W_a = 6.53*(1+\cos 40.82^0) = 11.47 \, \text{Дж/м}^2,$$
 (2.1);

$$W_a = 34,17*(1+\cos 40,82^0) = 60,02 \text{ Дж/м}^2,$$
 (2,2).

Приведенный пример показывает, что наблюдаемое различие в работах адгезии больше зависит от различий значений поверхностного натяжения границ раздела «вода – ТГКК» и «раствор БКК – ТГКК».

Анализ рис. 8(б) показал, что дистиллированная вода и раствор бутилового ксантогената калия существенно различаются по влиянию на адгезию ТГКК на поверхности сфалерита. В дистиллированной воде работа адгезии колеблется от 10,54 до 11,57 Дж/м². В растворе БКК работа адгезия значительно возрастает, достигая диапазона от 50,52 до 54,19 Дж/м². Также важно отметить, что использование комбинаций реагентов приводит к снижению адгезии по сравнению с отдельными реагентами. При этом, с увеличением краевого угла смачивания наблюдается снижение работы адгезии. Это проявляется и в дистиллированной воде, и в растворе бутилового ксантогената калия.

В отличие от сфалерита, на поверхности таблеток из пирита не наблюдается устойчивого закрепления капли ТГКК ни в воде, ни в растворе БКК. Изображения взаимодействия капли органической жидкости ТГКК с поверхностью пирита в дистиллированной воде и в растворе БКК показаны на рисунке 9.

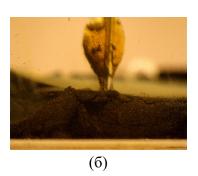
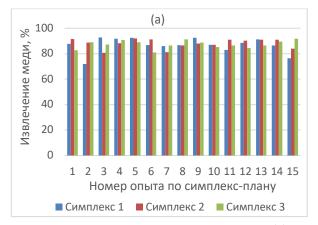


Рисунок 9 – Изображения капли органической жидкости ТГКК на поверхности таблеток пирита в дистиллированной воде (a) и в растворе ксантогената калия (б)

Важно отметить, что капля органической жидкости легко отрывается от поверхности пирита, что указывает на слабое формирование адгезионных взаимодействий между органической жидкостью и минералом.

Таким образом, сфалерит обладает повышенной гидрофильностью в дистиллированной воде и демонстрирует рост гидрофобности в м растворе бутилового ксантогената калия. При нанесении капли органической жидкости на поверхность пирита не наблюдается устойчивой адгезии капли ТГКК, что связано с большей гидрофильностью пирита, чем сфалерита.


Четвертая глава посвящена исследованию действия металлсодержащих модификаторов с сернистым натрием на поверхность сульфидных минералов при флотации медно-цинковой колчеданной руды одного из месторождений Урала.

Исследование флотации медно-цинковой руды без добавления во флотацию композиции металлосодержащих модификаторов с сернистым натрием. Как следует из схемы флотации руды (рис. 1), первой операцией флотации является флотация наиболее легкофлотируемых фракций всех сульфидов, входящих в руду (флотация I). Данная операция проводилась при «голодном» режиме по собирателю (10 г/т БКК). Результаты флотации I показали, что наибольшей флотоактивностью обладают минералы меди; извлечение меди в концентрат флотации на 30 % превышает извлечение цинка.

Исследование действия композиции из железного, медного, цинкового купоросов и сернистого натрия на медно-цинковую флотацию. Коллективная медно-цинковая

флотация (флотации II) проводилась на хвостах флотации I при добавлении композиций реагентов-модификаторов с сернистым натрием в эту флотацию.

Симплекс-план 1 составлен для смеси «железный купорос + цинковый купорос + сернистый натрий», симплекс-план 2 — «железный купорос + медный купорос + сернистый натрий» и симплекс-план 3 — «медный купорос + цинковый купорос + сернистый натрий». Результаты флотации II представлены на рисунке 10.

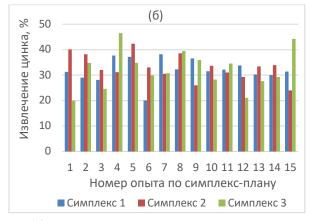


Рисунок 10 - Извлечение меди (а) и цинка (б) в концентрат медно-цинковой флотации в опытах, поставленных со смесями реагентов-модификаторов в соответствии с симплекс-планами 1, 2, 3; ряд 1 – симплекс 1, ряд 2 – симплекс 2, ряд 3 – симплекс 3

Как следует из рисунка 10(а), наибольшее извлечение меди в концентрат медноцинковой флотации наблюдаются в опыте 3, соответствующем симплекс-плану 1. В этом случае в медно-цинковую флотацию дозировался только сернистый натрий с расходом 100 г/т. Извлечение меди в этом опыте составило 92,67%. Сопоставимый результат по извлечению меди получен в опыте 5, поставленного по тому же симплекс-плану. В данном случае в медно-цинковую флотацию дозировалась смесь железного купороса с сернистым натрием, каждый с расходом 50 г/т. Извлечение меди в медно-цинковый концентрат составило 92,6%. Наконец, в 15-м опыте, поставленном в соответствии с симплекс-планом 3 (25 г/т медного купороса + 25 г/т цинкового купороса + 50 г/т сернистого натрия), так же достигнуто извлечение меди, равное 91,66 %.

Более избирательно действуют исследованные смеси реагентов-модификаторов на флотацию цинка в той же операции медно-цинковой флотации (рис. 10, б). Наибольшее извлечение цинка в медно-цинковый концентрат наблюдается в опыте 4, поставленному по симплекс-плану 3. В данном опыте применена композиция медного и цинкового купороса при их равных расходах 50 г/т. В этом опыте получено извлечение цинка в медно-цинковый концентрат, равное 46,52%. Несколько меньшее извлечение достигнуто в опыте 15, проведенном по тому же симплекс-плану. В этом опыте смеси реагентовмодификаторов представлена смесью медного купороса, цинкового купороса и сернистого натрия при их расходах 25% CuSO₄*5H₂O + 25% ZnSO₄*7H₂O + 50% Na₂S*9H₂O. Излечение цинка в данном опыте составило 44,2 %.

Говоря о суммарном извлечении меди и цинка в концентрат медно-цинковой флотации, необходимо отметить, что максимальное извлечение меди и цинка в медно-цинковый концентрат достигнуто в опыте 4 третьего симплекс-плана (рис. 11). Сумма извлечений меди и цинка в медно-цинковый концентрат в этом опыте составило 137,21 %.

Близкое суммарное извлечение меди и цинка достигнуто в опыте 15 третьего симплексплана, равное 135,87 %.

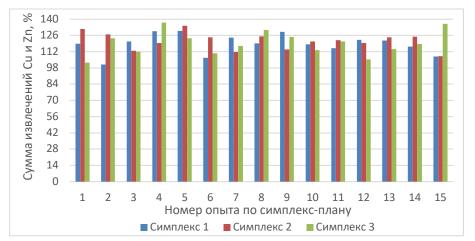


Рисунок 11 - Суммарное извлечение меди и цинка в концентрат медно-цинковой флотации в опытах, поставленных со смесями реагентов-модификаторов

Как следует из схемы проведения флотации в коллективном медно-цинковом цикле флотации колчеданной медно-цинковой руды (рис. 1), схема содержит две операции флотации – флотацию I и флотацию II. Исходя из реагентного режима флотации I, в ней флотируются наиболее флотоактивные фракции сульфидов меди, цинка и пирита. При этом наблюдается большой разброс массовых долей меди и цинка в хвостах флотации I, являющихся питанием флотации II. Средние значения массовых долей меди и цинка в питании флотации II (медно-цинковая флотация) составили 0,4±0,04 % и 1,23±0,1 %.

Поэтому было проанализировано влияние используемых композиций реагентовмодификаторов не на качество медно-цинкового концентрата по меди и цинку, а на степень их концентрации в медно-цинковой флотации (рис. 12).

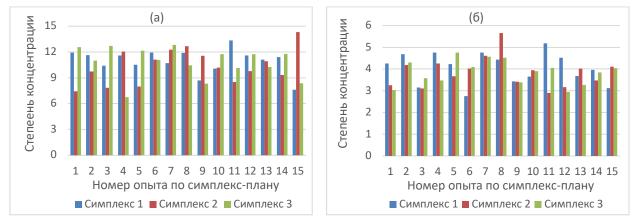


Рисунок 12 - Степень концентрации меди (а) и цинка (б) в концентрат медноцинковой флотации в опытах с использованием смесей реагентов-модификаторов

Из рисунка следует, что наблюдаемые повышенные степени концентрации меди и цинка являются следствием не повышенного содержания этих металлов в питании флотации, а проявлением действия определенных смесей композиций исследуемых композиций реагентов-модификаторов флотации меди и цинка в данной операции флотации.

Очевидно, что кроме таких технологических параметров флотации, как извлечение металлов в концентрат и степени их концентрации, необходима оценка эффективности протекания самого разделительного массопереноса в исследуемой флотации. Для этого, применительно к каждому флотационному опыту была рассчитана эффективность флотации меди и цинка по Люйкену:

$$E = (\varepsilon - \gamma)/(100 - \alpha), \tag{3}$$

где ε – извлечение либо меди, либо цинка в концентрат флотации II,

γ – выход концентрата,

α – массовая доля либо меди, либо цинка в питании флотации II.

На рисунке 13 показано распределение эффективности флотации меди и цинка, достигнутое во всех опытах, поставленных в соответствии со всеми тремя симплекспланами.

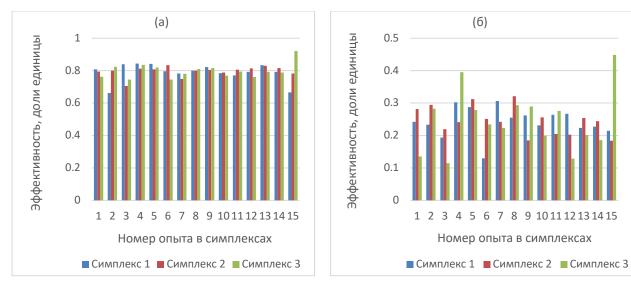
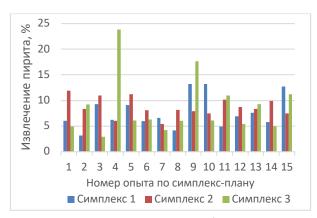



Рисунок 13 — Эффективность флотации меди (а) и цинка (б) в концентрат медно-цинковой флотации в опытах, поставленных со смесями реагентов-модификаторов, в соответствии с симплекс-планами 1, 2, 3

Из рисунка следует, что эффективность флотации меди в 2–3 раза выше, чем эффективность флотации цинка. Максимальные эффективности флотации этих двух металлов наблюдаются в опыте 15, поставленному по симплекс-плану 3. В этом опыте, во флотацию дозировались 25 г/т медного купороса, 25 г/т цинкового купороса и 50 г/т сернистого натрия. В этом опыте эффективность флотации меди достигла 0,92 отн. ед., а цинка – 0,44 отн. ед., что существенно выше эффективностей флотации тех же металлов, достигнутые в опыте без дозирования реагентов-модификаторов, которые составляют 0,77 отн. ед. для меди и 0,19 для цинка.

На рисунке 14 представлены результаты флотации пирита при дозировании в медно-цинковую флотацию исследованных композиций реагентов-модификаторов флотации и степени его концентрации.

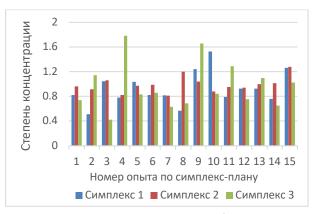


Рисунок 14 – Результаты флотации пирита в концентрат медно-цинковой флотации

Из рисунка следует, что во всех флотационных опытах, где достигнуто наибольшее извлечение меди (опыт 3, симплекс-план 1, опыт 5, симплекс-план 1, опыт 15, симплекс-план 3), извлечение пирита в медно-цинковый концентрат не превышает 11,2%, а степень концентрации пирита близка к единице, то есть массовая доля пирита в медно-цинковом концентрате близка к его массовой доле в питании медно-цинковой флотации.

Таким образом, результаты медно-цинковой флотации показали, что применение реагентов в виде двойной смеси железного купороса и сернистого натрия при ее расходе 100 г/т и расходе каждого из них 50 г/т, а также тройной смеси медного, цинкового купоросов и сернистого натрия при их соотношении в смеси 25% : 25% : 50% при том же общем расходе смеси 100 г/т не только способствует увеличению извлечения меди и цинка в концентрат, но и одновременно обеспечивает депрессию флотации пирита. В первом случае извлечения меди, цинка и железа в концентрат составили 92,6%, 37,2% и 8,4% соответственно, тогда как при использовании второй смеси эти показатели достигли 91,66%, 44,21% и 12,07%.

Предложенные и исследованные в работе композиции реагентов-модификаторов флотации сульфидов меди и цинка в медно-цинковой флотации в виде смесей железного, медного, цинкового купоросов и сернистого натрия, при их различном соотношении в смеси, при ее общем расходе 100 г/т показали эффективность действия данных смесей реагентов. Говоря о суммарном извлечении меди и цинка в концентрат медно-цинковой флотации, необходимо отметить дозирование двойной смеси 50 г/т железного купороса и 50 г/т сернистого натрия и тройной смеси 25 г/т медного, 25 г/т цинкового купоросов и 50 г/т сернистого натрия в указанную флотацию.

Моделирование составов трехкомпонентных композиций реагентов-модификаторов для оптимизации показателей медно-цинковой флотации. В работе разработаны математические модели для прогнозирования состава трехкомпонентных композиций металлосодержащих реагентов-модификаторов, применяемых в медно-цинковой флотации, при которых могут быть достигнуты наилучшие показатели во флотации II. При разработке моделей были использованы экспериментальные результаты медно-цинковой флотации, полученные при реализации всех симплекс-планов.

Для плана эксперимента Шеффе 4-го порядка математическая модель имеет вид:

$$Y = \beta_{1}x_{1} + \beta_{2}x_{2} + \beta_{3}x_{3} + \beta_{12}x_{1}x_{2} + \beta_{13}x_{1}x_{3} + \beta_{23}x_{2}x_{3} + + \gamma_{12}x_{1}x_{2}(x_{1} - x_{2}) + \gamma_{13}x_{1}x_{3}(x_{1} - x_{3}) + \gamma_{23}x_{2}x_{3}(x_{2} - x_{3}) + + \delta_{12}x_{1}x_{2}(x_{1} - x_{2})^{2} + \delta_{13}x_{1}x_{3}(x_{1} - x_{3})^{2} + \delta_{23}x_{2}x_{3}(x_{2} - x_{3})^{2} + + \beta_{1123}x_{1}^{2}x_{2}x_{3} + \beta_{1223}x_{1}x_{2}^{2}x_{3} + \beta_{1233}x_{1}x_{2}x_{3}^{2}$$

$$(4)$$

Ниже приведены полученные зависимости извлечения меди (ε_{Cu}), цинка (ε_{Zn}) и железа (ε_{Fe}) от относительных долей медного, цинкового купоросов и сернистого натрия в соответствии с третьим симплекс-планом, при реализации которого установлен состав смеси медного (x_1), цинкового (x_2) купоросов и сернистого натрия(x_3), обеспечивающий наилучшие показатели медно-цинковой флотации.

$$\varepsilon_{Cu} = 82,69x_1 + 88,92x_2 + 87,31x_3 + 19,54x_1x_2 + 15,6x_1x_3 - 29,02x_2x_3 - 9,25x_1x_2(x_1 - x_2) + 30,83x_1x_3(x_1 - x_3) + 6,8x_2x_3(x_2 - x_3) - 15,01x_1x_2(x_1 - x_2)^2 - 21,76x_1x_3(x_1 - x_3)^2 + 57,31x_2x_3(x_2 - x_3)^2 - 439,01x_1^2x_2x_3 + 22,56x_1x_2^2x_3 + 621,47x_1x_2x_3^2$$
(5)

$$\varepsilon_{Zn} = 19,98x_1 + 34,77x_2 + 24,58x_3 + 76,58x_1x_2 + 49,92x_1x_3 + 0,82x_2x_3 - 7,17x_1x_2(x_1 - x_2) + 53,33x_1x_3(x_1 - x_3) + 44,35x_2x_3(x_2 - x_3) - 141,73x_1x_2(x_1 - x_2)^2 + 10,67x_1x_3(x_1 - x_3)^2 - 43,17x_2x_3(x_2 - x_3)^2 - 1238,53x_1^2x_2x_3 - 1077,97x_1x_2^2x_3 + 1824,51x_1x_2x_3^2$$
(6)

$$\varepsilon_{Fe} = 5,47x_1 + 8,51x_2 + 6,3x_3 + 27,16x_1x_2 + 3,26x_1x_3 - 3,78x_2x_3 - 2,35x_1x_2(x_1 - x_2) + 28,72x_1x_3(x_1 - x_3) + 10,53x_2x_3(x_2 - x_3) - 105,44x_1x_2(x_1 - x_2)^2 + 80,61x_1x_3(x_1 - x_3)^2 + 35,28x_2x_3(x_2 - x_3)^2 - 212,4x_1^2x_2x_3 - 305,09x_1x_2^2x_3 + 522,03x_1x_2x_3^2$$

$$(7)$$

На рисунке 15 представлены результаты зависимости расчетного значения функции отклика флотации ε_{Cu} , ε_{Zn} и ε_{Fe} от относительной доли каждого компонента в смесях реагентов-модификаторов (симплекс-план 3).

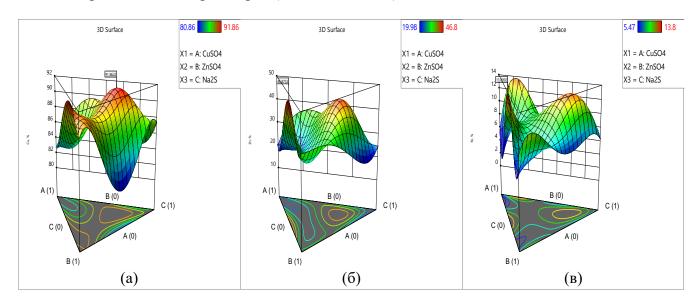


Рисунок 15 — Зависимость функции отклика ε_{Cu} (а) ε_{Zn} (б) и ε_{Fe} (в) от относительной доли каждого реагента в смеси реагентов-модификаторов по симплекс-плану 3

Расчеты, выполненные по представленным уравнениям, показали, что наиболее высокое значение извлечения меди (91,87%) может быть достигнуто при использовании следующей комбинации реагентов: 24% медного купороса + 20% цинкового купороса +56% сернистого натрия. При этом заметное повышение извлечения цинка (45,12%)

может наблюдаться при уменьшении доли медного (до 23%) и цинкового купоросов (до,21%) и повышении доли сернистого натрия (до 56%).

Таким образом, разработанные модели позволяют прогнозировать оптимальный состав реагентов-модификаторов в виде двух- и трёхкомпонентных смесей, а также анализировать их влияние на показатели извлечения меди и цинка из пирита в концентрат при медно-цинковой флотации.

В пятой главе описаны результаты лабораторных исследований селективной флотации коллективного медно-цинкового концентрата с использованием смеси реагентов-модификаторов в коллективном цикле медно-цинковой флотации. Схема проведения селективной флотации представлена на рисунке 3, а экспериментальные результаты — на рисунке 16.

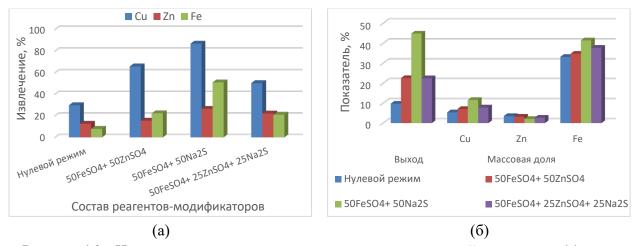


Рисунок 16 – Извлечение меди, цинка и железа в медно-пиритный концентрат (a) и его выход и содержание элементов (б)

Анализ рисунка 16 (а) показал, что наибольшее извлечение меди (86,74%) и железа (50,88%) достигнуто при селекции коллективного медно-цинкового концентрата, полученного при использовании смеси железного купороса и сернистого натрия при расходе каждого реагента 50 г/т. При этом извлечение цинка в камерный продукт меднопиритной флотации составило 73,68%. Необходимо отметить, что массовая доля меди в медно-пиритном концентрате составила 11,6%, при содержании цинка 2,05%.

В таблице 2 представлены балансы металлов меди, цинка и железа при селективной флотации коллективного медно-цинкового концентрата.

Таб. 2 – Балансы металлов меди, цинка и железа при селекции коллективного концентрата

Реагентный	Наименование	Выход,	Содержание, %			Извлечение, %		
режим	продукта	%	Cu	Fe	Zn	Cu	Fe	Zn
Нулевой режим	Cu-Py продукт	2,89	5,42	33,20	3,54	27,72	2,56	12,34
	Zn продукт	26,86	1,38	42,17	2,65	65,46	30,17	85,71
	Хвосты	70,24	0,06	35,97	0,02	6,83	67,28	1,94
	Руда	100	0,57	37,55	0,83	100	100	100
50 г/т FeSO ₄ + 50 г/т Na ₂ S	Си-Ру продукт	4,63	11,58	41,5	2,09	75,45	4,71	26,32
	Zn продукт	5,68	1,44	32,63	4,76	11,54	4,55	73,68
	Хвосты	89,7	0,1	41,24	0	13,01	90,74	0
	Руда	100	0,71	40,76	0,37	100	100	100

Анализ балансов металлов, представленных в таблице 3, показал эффективность применения смеси, состоящей из 50 % железного купороса и 50 % сернистого натрия при общем расходе смеси 100 г/т в коллективном цикле флотации колчеданной медноцинковой руды не только в коллективном медно-цинковом цикле флотации, но и при его селекции.

Таким образом, наилучшие технологические показатели медно-пиритной флотации и высокая эффективность селективного разделения минералов меди и цинка достигаются при совместном применении железного купороса и сульфида натрия при их расходах 50 г/т ($\varepsilon_{\text{Cu}} = 75,5$ %), при повышении качества медно-пиритного концентрата до 12 %, а также цинковый продукт с содержанием цинка 4 %.

ОСНОВНЫЕ ВЫВОДЫ

- 1. Медно-цинковые колчеданные руды уральских месторождений относятся к категории труднообогатимых вследствие высокого содержания пирита и тонковкрапленного взаимного срастания сульфидов меди, цинка и железа. Традиционные схемы коллективно-селективной флотации обеспечивают получение кондиционных медных и цинковых концентратов, однако характеризуются значительными потерями ценных компонентов с отвальными хвостами.
- 2. Теоретически обоснован, экспериментально подтвержден и технологически апробирован эффективный способ повышения селективности флотации медно-цинковых колчеданных руд за счет применения композиций металлосодержащих модификаторов с сернистым натрием в коллективном медно-цинковом цикле флотации.
- 3. Композиции металлосодержащих реагентов-модификаторов железного, цинкового, медного купоросов с сернистым натрием существенно влияют на физико-химические характеристики минеральной поверхности, в том числе на дзета-потенциал, гидрофобность и поверхностную энергию зерен сфалерита и пирита.
- 4. Методом электроосмоса доказано, что обработка зерен сфалерита раствором со смесью железного купороса и сернистого натрия в соотношении 50%:50% приводит к нейтрализации его поверхностного заряда (дзета-потенциал близок к нулю), что способствует закреплению аполярных форм собирателей. Обработка чистым FeSO₄, напротив, сообщает поверхности сфалерита выраженный положительный заряд, благоприятствующий адсорбции анионных собирателей. Установлена значительно меньшая чувствительность поверхности пирита к действию исследуемых модификаторов.
- 5. Методом измерения краевого угла смачивания аполярной органической жидкостью ТГКК в растворе бутилового ксантогената калия, установлен ряд увеличения гидрофобности поверхности сфалерита после предварительной обработки его зерен различными реагентами: $FeSO_4 < 0.5FeSO_4 + 0.5ZnSO_4 < 0.5FeSO_4 + 0.25ZnSO_4 + 0.2$
- 6. Результаты потенциометрии и кондуктометрии растворов и жидкой фазы суспензий осадков гидроксидов кальция, железа, цинка и меди подтвердили, что введение в такие суспензии сернистого натрия позволяет направленно регулировать окислительновосстановительный потенциал, рН и ионный состав пульпы, создавая восстановительную среду, благоприятную для селективной флотации сульфидов меди и цинка от пирита.

- 7. Экспериментально определены оптимальные составы растворов из реагентовмодификаторов с сернистым натрием для коллективной медно-цинковой флотации. Наибольшее суммарное извлечение меди и цинка (91,7 % и 44,2 % соответственно) достигнуто при использовании смеси 25г/т CuSO₄, 25г/т ZnSO₄ и 50г/т Na₂S. Показано, что применение смеси FeSO₄ (50г/т) и Na₂S (50г/т) обеспечивает максимальное извлечение меди (92,6 %) при подавлении флотации пирита. Кинетические исследования подтвердили, что использование двухкомпонентной смеси FeSO₄+Na₂S способствует ускоренной флотации минералов меди и цинка при снижении флотоактивности пирита.
- основе симплексного планирования эксперимента разработаны статистические тройных композиций модели, описывающие влияние состава модификаторов (CuSO₄+ZnSO₄+Na₂S) на технологические показатели коллективной медно-цинковой флотации. Теоретически и экспериментально определен оптимальный состав реагентной композиции: 25г/т CuSO₄ + 20г/т ZnSO₄ + 55г/т Na₂S, обеспечивающий высокое извлечение меди (91,9 %) и цинка (45,0%) в коллективный концентрат при минимальном извлечении железа (12,55 %).
- 9. Укрупненные лабораторные испытания подтвердили эффективность применения композиций металлосодержащих реагентов-модификаторов с сернистым натрием в коллективном цикле флотации при дальнейшей селекции коллективного концентрата. Наилучшие результаты селективного разделения коллективного концентрата достигнуты при использовании смеси железного купороса и сернистого натрия в соотношении 50 %: 50 %. Предложенный реагентный режим позволяет повысить селективность разделения медных и цинковых минералов от пирита и сократить потери цветных металлов с обеспечив получение медно-пиритного хвостами переработки, концентрата содержанием меди 11,6 % при извлечении 86,6 %, с пониженными потерями цинка (26,3 %). Кинетика протекания медно-пиритной флотации подтвердила, что применение композиции 50 г/т FeSO₄ + 50 г/т Na₂S обеспечивает максимальную скорость флотации минералов меди, основная масса которых (~99 %) сосредоточена в легко- и среднефлотируемых фракциях (константы скорости флотации K = 1-100 мин $^{-1}$), при одновременном переводе пирита в категорию труднофлотируемых фракций. Доля средне флотируемой фракции достигает 0,48 отн. единиц, а легко флотируемой 0,51 отн. единиц.

Проведенные исследования показали перспективность применения композиций металлосодержащих реагентов-модификаторов с сернистым натрием в технологии флотации медно-цинковых колчеданных руд. Разработанные режимы обеспечивают улучшение технологических показателей коллективно-селективной флотации, повышают эффективность извлечения меди и цинка и способствуют снижению флотоактивности пирита, что открывает возможности для внедрения данных решений в промышленную практику обогатительных фабрик.

ПУБЛИКАЦИИ ПО ДИССЕРТАЦИОННОЙ РАБОТЕ

- 1. Хтет 3о У, Чжо Зай Яа, Горячев Б. Е. Действие композиций из железного, цинкового купоросов и сернистого натрия на флотацию медно-цинковых колчеданных руд. Горный информационно-аналитический бюллетень. 2023;(12):139–151.
- 2. Хтет Зо У, Чжо Зай Яа, Горячев Б. Е. Моделирование и оптимизация составов трехкомпонентных смесей модификаторов методом симплексного планирования для анализа их влияния на флотацию медно-цинковых колчеданных руд. Горный информационно-аналитический бюллетень. 2024;(8):141–152.

- 3. Хтет Зо У, Чжо Зай Яа, Горячев Б. Е. Роль симплексного планирования эксперимента в совершенствовании прогнозирования и оптимизации составов многокомпонентных систем реагентов-модификаторов при флотации медно-цинковых руд. Проблемы недропользования. 2024;(3):87–98.
- 4. Чжо Зай Яа, Хтет Зо У, Д. В. Шехирев, Б. Е. Горячев. Влияние сульфата железа, сернистого натрия и их смеси на флотацию сфалерита в щелочной среде. *Устойчивое развитие горных территорий*. 2023, №1. С. 122–133.
- 5. Хтет Зо У, Б. Е. Горячев. Исследование влияния смеси металлосодержащих модификаторов и времени измельчения на процесс флотации медно-цинковых колчеданных руд. Тезисы докладов 81-й международной научно-технической конференции. Магнитогорск: Изд-во Магнитогорск. гос. техн. ун-та им. Г. И. Носова, 2023. Т.1. С.38.
- 6. Хтет Зо У, Чжо Зай Яа, Б. Е. Горячев. Исследование влияния композиций металлосодержащих модификаторов с сернистым натрием на флотацию медно-цинковых колчеданных руд. Материалы международной конференции (Плаксинские чтения 2023). М.: Издательство «Спутник +», 2023. С. 311–314.
- 7. Хтет 3о У, Б. Е. Горячев. Исследование возможности повышения селективности флотации медно-цинковых колчеданных руд с использованием композиций металлосодержащих модификаторов с сернистым натрием. Тезисы докладов участников XIX Международного форума-конкурса студентов и молодых ученых. Издательство: Санкт-Петербургский горный университет, 2023. Том 1. С. 115–117.
- 8. Хтет 3о.У., Горячев Б.Е. Оптимизация составов многокомпонентных смесей реагентов-модификаторов при флотации медно-цинковых руд на основе симплексного планирования эксперимента. В сборнике: Актуальные проблемы эффективного использования полезных ископаемых и сохранения окружающей среды (Леоновские чтения 2024), г. Иркутск, 2024. С. 96-101.
- 9. Хтет 30 У, Чжо Зай Яа, Б. Е. Горячев. Разработка оптимального селективного реагентного режима флотации медно-цинковой колчеданной руды на основе композиций металлосодержащих модификаторов с сернистым натрием. Материалы международной конференции (Плаксинские чтения 2024), г. Апатиты. Издво ФИЦ КНЦ РАН, 2024. С. 285–290.
- 10. Kyaw Z.Y., Nikolaev A.A., Htet Z.O., Phyo K.K. Study of the effect of copper (II), zinc and iron (II) sulphates on the froth flotation of sphalerite by sulfhydryl collectors. *Key Engineering Materials*. 2022. Volume 920. p 551–556.
- 11. Kyaw Z.Y., Tiagalieva Z.A., Htet Z.O., Phyo K.K. Improvement of reagent flotation modes of sphalerite and pyrite from deposits of copper-zinc pyrite, polymetallic copper-zinc pyrite and polymetallic ores. *Earth and Environmental Science*. 2021. Volume 942. p 1–8.
- 12. Хтет Зо У, Пермякова Е. С., Чжо Зай Яа, Б. Е. Горячев. Экспериментальное определение поверхностного натяжения жидкостей методом висящей капли. Материалы международной конференции (Плаксинские чтения 2025), г. Екатеринбург: Изд-во «Форт-Диалог Исеть», 2025. С. 277–280.
- 13. Хтет Зо У, Чжо Зай Яа, Николаев А. А., Горячев Б. Е., Конюхов Ю. В. Способ неорганических дозирования смеси реагентов-модификаторов разнонаправленного действия флотации сульфидов при цветных металлов. Зарегистрировано в Депозитарии ноу-хау НИТУ «МИСИС». № 14–654–2025 ОИС от "14" октября 2025г.